Journal of Mathematical Sciences

, Volume 80, Issue 2, pp 1654–1698 | Cite as

Mathematical aspects of concept analysis

  • S. O. Kuznetsov

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aho and J. Hopcroft,The Design and Analysis of Computer Algorithms, Addison-Wesley (1974).Google Scholar
  2. 2.
    O. M. Anshakov, D. P. Skvortsov, and V. K. Finn, “Logical means of the JSM-method of automatic hypothesis generation,”Nauchn. Tekh. Inf., Ser. 2 (Autom. Document. Math. Linguist.), No. 9, 9–17 (1978).Google Scholar
  3. 3.
    O. M. Anshakov, D. P. Skvortsov, V. K. Finn, and V. G. Ivashko, “Logical means of the JSM-method of automatic generation: main notions and the system of inference rules,”Nauchn. Tekh. Inf., Ser. 2 (Autom. Document. Math. Linguist.), No. 9, 10–18 (1987).Google Scholar
  4. 4.
    O. M. Anshakov, V. K. Finn, and D. P. Skvortsov, “On logical means of formalization of plausible inferences,” In:VIII International Congress of Logic, Methodol., and Phil. of Sci., Abstracts, 212–215, Nauka, Moscow, (1987).Google Scholar
  5. 5.
    O. M. Anshakov, V. K. Finn, and D. P. Skvortsov, “On axiomatization of many-valued logics associated with the formalization of plausible reasonings,”Stud. Log.,25, No. 4, 23–47 (1989).MathSciNetGoogle Scholar
  6. 6.
    R. Balbes and P. Dwinger,Distributive Lattices, University of Missouri Press (1974).Google Scholar
  7. 7.
    M. Barbut and B. Monjardet,Ordre et classification,II, Hachette, Paris (1970).Google Scholar
  8. 8.
    G. D. Birkhoff,Lattice Theory, Amer. Math. Soc. (1979).Google Scholar
  9. 9.
    J. P. Bordat, “Calcul pratique du treillis de Galois d'une correspondance,”Math. Sci. Hum., No. 96, 31–47 (1986).MATHMathSciNetGoogle Scholar
  10. 10.
    P. Burmeister, “Merkmalsimplikationen bei unvollständigem Wissen,” In:Arbeitstagung Begriffdanalyse und Künstliche Intelligenz (W. Lex, ed.), Institut für Informatik, Clausthal, pp. 15–46 (1991).Google Scholar
  11. 11.
    T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson, “the computational complexity of abduction,”Artif. Intell.,49, No. 1, 25–60 (1991).MathSciNetGoogle Scholar
  12. 12.
    M. Chein, “Algorithme de recherche des sous-matrices premières d'une matrice,”Bull. Math. R.S. Roumanie, No. 13, No. 1, 21–25 (1969).MATHMathSciNetGoogle Scholar
  13. 13.
    K. Čulik, “Teilweise Lösung eines verallgemeinerten Problem von K. Zarankiewicz,”Ann. Polon. Math.,3, No. 1, 165–168 (1956).MathSciNetGoogle Scholar
  14. 14.
    J. Duda, “Boolean concept lattices and good contexts,”Čas. Pest. Mat.,114, No.2, 165–175 (1989).MATHMathSciNetGoogle Scholar
  15. 15.
    V. Duquenne, “Contextual implications between attributes and some representation properties for finite lattices,” In:Beiträge zur Begriffsanalyse (B. Ganter, R. Wille, and K. E. Wolff, eds.), B. I. Wissenschaft-Verlag, Mahnnheim, pp. 213–239 (1987).Google Scholar
  16. 16.
    V. Duquenne and J.-L. Guigues, “Familles minimales d'implications informatives résultant d'un tableau de données binaires,”Math. Sci. Hum.,24, No. 95, 5–18 (1986).MathSciNetGoogle Scholar
  17. 17.
    B. Efron,Nontraditional Methods of Many-Dimensional Statistical Information, [Russian translation], Moscow (1988).Google Scholar
  18. 18.
    P. Erdös and J. Spenser,Probability Methods in Combinatorics [Russian tranlation], Moscow (1976).Google Scholar
  19. 19.
    V. K. Finn, “Data bases with incomplete information and a new method of automatic hypothesis generation,” In:Dialog and Factographic Information Systems [in Russian], Moscow, pp. 153–156 (1981).Google Scholar
  20. 20.
    V. K. Finn, “On machine-oriented formalization of plausible reasoning in the style of F. Backon-J. S. Mill,”Semiotika Informatica, No. 20, 35–101 (1983).MATHMathSciNetGoogle Scholar
  21. 21.
    V. K. Finn, “Plausible inference and plausible reasoning,”Itogi Nauki i Tekhniki, Seriya Teoriya Veroyatnostei, Mat. Statist. Teoret. Kibern.,28, 3–84 (1988).MATHMathSciNetGoogle Scholar
  22. 22.
    V. K. Finn, “JSM-method of automatic generation with an order relation,”Semiotika Informatika, No. 31, 69–103 (1990).Google Scholar
  23. 24.
    V. K. Finn, “Plausible reasoning in systems of JSM type,”Itogi Nauki i Tekhniki, Seriya Informatika,15, 54–101 (1991).Google Scholar
  24. 25.
    J. G. Ganascia, “CHARADE: A rule system learning system,” In:Proc. of the 10th International Joint Conference on Artificial Intelligence (IJCAI-87), Milan, Italy, August 23–28 (1987), 117–124 (1987).Google Scholar
  25. 26.
    J. G. Ganascia, “Improvement and refinement of the learning bias semantic,” In:Proc. of the 8th Europ. Conf. on Artificial Intelligence (ECAI-88), pp. 81–86, (1988).Google Scholar
  26. 27.
    B. Ganter, “Two basic algorithms in concept analysis,”preprint 831, Technische Hochshule Darmstadt (1984).Google Scholar
  27. 28.
    B. Ganter, “Algorithmen zur Formalen Begriffsanalyse,” In:Beiträge zur Begriffsanalyse, (B. Ganter, R. Wille, and K. E. Wolff, eds.), B. I. Wissenschaftsverlag, Mannheim, 241–254, (1987).Google Scholar
  28. 29.
    B. Ganter, “Composition and Decomposition in Formal concept Analysis,” In:Classification and Related Methods of Data Analysis (H. H. Bock, ed.), North-Holland, Amsterdam, 561–566, (1988).Google Scholar
  29. 30.
    B. Ganter, K. Rindfrey, and M. Skorsky, “Software for formal concept analysis,” In:Classification as a Tool of Research (W. Gaul and M. Schader, eds.), North-Holland, Amsterdam, 161–167, (1986).Google Scholar
  30. 31.
    B. Ganter, J. Stahl, and R. Wille, “Conceptual measurement and many-valued contexts,” In:Classification as a Tool of Research (W. Gaul and M. Schader, eds.), North-Holland, Amsterdam, 169–176, (1986).Google Scholar
  31. 32.
    B. Ganter and R. Wille, “Implikationen und Abhängigkeiten zwischen Merkmalen,” In:Die Klassifikation und ihr Umfeld, (P. O. Degens, H.-J. Hermes, and O. Opitz, eds.), Index-Verlag, Frankfurt, 171–185, (1986).Google Scholar
  32. 33.
    B. Ganter and R. Wille, “Conceptual scaling,” In:Applications of Combinatorics and Graph Theory to the Biological and Social Sciences (F. Roberts, ed.), Springer, New York, 139–167, (1989).Google Scholar
  33. 34.
    M. Gary and D. Johnson,Computers and Intractability [Russian translation], Mir, Moscow (1982).Google Scholar
  34. 35.
    G. Grätzer,General Lattice Theory, Birkhäuser Verlag, Basel-Stuttgart (1978).Google Scholar
  35. 36.
    A. Guénoche, “Construction du treillis de Galois d'une relation binaire,”Math. Inf. Sci. Hum., No. 109, 41–53 (1990).MATHGoogle Scholar
  36. 37.
    S. M. Gusakova, “Canonical representation of similarity,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 9, 19–22 (1987).Google Scholar
  37. 38.
    S. M. Gusakova and V. K. Finn, “On formalization of local and global similarity,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 6, 16–19 (1986).Google Scholar
  38. 39.
    S. M. Gusakova and V. K. Finn, “On new means of formalization of the notion of similarity,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 10, 14–22 (1987).Google Scholar
  39. 40.
    R. K. Guy, “A problem of Zarankiewicz,” In:Theory of Graphs, (G. Katona, ed.) Akad. Kiado, Budapest, 119–150 (1968).Google Scholar
  40. 41.
    R. K. Guy and Š. Znám, “A problem of Zarankiewicz,”Recent Progr. Combinator., New York-London, 237–243, (1969).Google Scholar
  41. 42.
    R. M. Haralick, “The diclique representation and decomposition of binary relations,”J. ACM,21, 356–366 (1974).CrossRefMATHMathSciNetGoogle Scholar
  42. 43.
    S. Hartman, J. Mycielski, and C. Ryll-Nardzewski, “Système speciaux de points a coordonnees entieres,”Coll. Math.,3, No. 1, 84–85 (1954).Google Scholar
  43. 44.
    C. Hylten-Cavallius, “On a combinatorial problem,”Colloq. Math.,6, 59–65 (1958).MATHMathSciNetGoogle Scholar
  44. 45.
    U. Kipke and R. Wille, “Begriffsverbände als Ablaufschemata zur Gegenstandsbestimmung,” In:Die Klassifikation und ihr Umfeld (P. O. Degens, H.-J. Hermes, and O. Opitz, eds.), Indeks-Verlag, Frankfurt, 164–170, (1986).Google Scholar
  45. 46.
    T. Kővari, V. Sós, and P. Turan, “On a problem of K. Zarankiewicz,”Colloq. Math.,3, No. 1, 50–57 (1954).Google Scholar
  46. 47.
    S. O. Kuznetsov, “Interpretation on graphs and complexity characteristics of a search for specific patterns,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.) No. 1, 23–27 (1989).MATHGoogle Scholar
  47. 48.
    S. O. Kuznetsov, “Introduction to the JSM-method,”Semiotika i Informatika, No. 31, 5–40 (1990).MATHGoogle Scholar
  48. 49.
    S. O. Kuznetsov, “Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.) No. 12, 21–29 (1990).MATHGoogle Scholar
  49. 50.
    S. O. Kuznetsov, “JSM-method as a system of machine learning,”Itogi Nauki i Tekhniki, Seriya Informatika,15, 17–54 (1991).Google Scholar
  50. 51.
    S. O. Kuznetsov, “Complexity of learning and classification based on a search for set intersection,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.) No. 5, 1–11 (1991).MATHGoogle Scholar
  51. 52.
    S. O. Kuznetsov, “Fast algorithm for construction of all intersections of the objects from a finite semilattice,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist) No. 9, 11–21 (1993).Google Scholar
  52. 53.
    S. O. Kuznetsov, Algorithmic complexity of the generation of hypotheses and classification based on the search for set intersectionDoklady Akad. Nauk,335, No. 3, 300–303, (1994). (Physics-Doklady,39, 142–145 (1994)).MATHGoogle Scholar
  53. 54.
    V. E. Levit, “Algorithm of search for a submatrix of maximal perimeter that consists of units for the case of 0–1 matrix,”Systems of transmitting and processing of information, Collection of papers of IPPI of Soviet Acad. Sci., 42–45, (1988).Google Scholar
  54. 55.
    P. Luksch, Skorsky M., and R. Wille, “On drawing concept lattices with a computer,” In:Classification as a Tool of Research (W. Gaul, and M. Schader, eds.), Elsevier, 269–274, (1986).Google Scholar
  55. 56.
    P. Luksch and R. Wille, “Substitution decomposition of concept lattices,” In:Contributions to General Algebra 5 (J. Czermak, G. Eigenthaler, H. K. Kaiser, and W. B. Müller, W. Nobauer, eds.), Holder-Pichler-Tempsky, Wien, 213–220, (1987).Google Scholar
  56. 57.
    P. Luksch and R. Wille, “Formal concept analysis of paired comparisons,” In:Classification and Related Methods of Data Analysis (H. H. Bock, ed.), North-Holland, Amsterdam, 567–576 (1988).Google Scholar
  57. 58.
    P. Luksch and R. Wille, “A mathematical model for conceptual knowledge systems,” In:Classification, Data Analysis, and Knowledge Organization (H. H. Bock and P. Ihm, eds.), Springer, Heidelberg, 156–162, (1990).Google Scholar
  58. 59.
    M. Luxenburger, “Implications partielles dans un contexte,”Math. Inf. Sci. Hum.,29, No. 113, 35–55 (1991).MathSciNetGoogle Scholar
  59. 60.
    R. S. Michalski and R. E. Stepp, “Learning from observation: conceptual clustering,”Machine Learning: an Artificial Intelligence Approach (R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, eds.), Tioga, Palo Alto, California, 41–81, (1983).Google Scholar
  60. 61.
    M. Mörs, “A new result on the problem of Zarankiewicz,”J. Comb. Theory, Ser. A,31, No. 2, 126–130 (1981).MATHGoogle Scholar
  61. 62.
    E. M. Norris, “An algorithm for computing the maximal rectangles in a binary relation,”Rev. Roum. de Math. Pures Appliquées,23, No. 2, 243–250 (1978).MATHMathSciNetGoogle Scholar
  62. 63.
    M. Novotný and Z. Pawlak, “Black box analysis and rough top equality,”Bull. Acad. Sci. Math.,33, Nos. 1–2, 105–113 (1985).Google Scholar
  63. 64.
    M. Novotný and Z. Pawlak, “Concept forming and black boxes,”Bull. Acad. Sci. Math.,35, Nos. 1–2, 133–141 (1987).Google Scholar
  64. 65.
    M. Novotný and Z. Pawlak, “Algebraic theory of independence in information systems,”Fundamenta Informaticae,14, No. 4, 454–476 (1991).MathSciNetGoogle Scholar
  65. 66.
    P. Pudlak and F. Springsteel, “Complexity in mechanized hypothesis formation,”Theor. Comp. Sci.,8, No. 2, 203–225 (1979).MathSciNetGoogle Scholar
  66. 67.
    I. Reiman, “Über ein Problem von K. Zarankiewicz,”Acta Math. Acad. Sci. Hungar.,9, 269–273 (1958).CrossRefMATHMathSciNetGoogle Scholar
  67. 68.
    K. Reuter and R. Wille, “Complete congruence relations of concept lattices,”Acta Sci. Math.,51, Nos. 3–4, 319–327 (1987).MathSciNetGoogle Scholar
  68. 69.
    S. Roman, “A problem of Zarankiewicz,”J. Comb. Th. (A),18, No. 2, 187–198 (1975).MATHMathSciNetGoogle Scholar
  69. 70.
    J. Schmidt, “Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge,”Arch. Math.,7, No. 4, 241–249 (1956).MATHMathSciNetGoogle Scholar
  70. 71.
    M. Skorsky, “How to draw a concept lattice with parallelograms,” In:Klassifikation und Ordnung (R. Wille, ed.), INDEKS-Verlag, Frankfurt, 191–196 (1989).Google Scholar
  71. 72.
    F. Springsteel, “Complexity of hypothesis formation problems,”Int. J. Man-Mach. Studies,15, 319–332 (1981).MathSciNetGoogle Scholar
  72. 73.
    J. Stahl and R. Wille, “Preconcepts and set representation of contexts,” In:Classification as a Tool of Research, (W. Gaul and M. Schader, eds.), Elsevier, 431–438, (1986).Google Scholar
  73. 74.
    L. G. Valiant, “The complexity of computing the permanent,”Theoretical Computer Science,8, No. 2, 189–201 (1979).MATHMathSciNetGoogle Scholar
  74. 75.
    L. G. Valiant, “The complexity of enumeration and reliability problems,”SIAM J. Comput.,8, No. 3, 410–421 (1979).MATHMathSciNetGoogle Scholar
  75. 76.
    F. Vogt, C. Wachter, and R. Wille, “Data analysis based on a conceptual file,” In:Classification, Data Analysis, and Knowledge Organization (H. H. Bock and P. Ihm, eds.), Springer, Heidelberg, 131–142, (1990).Google Scholar
  76. 77.
    M. Wild, “Implicational bases for finite closure systems,” In:Arbeitstagung, Begriffsanalyse und Künstliche Intelligenz (W. Lex, ed.), 147–169, (1991).Google Scholar
  77. 78.
    R. Wille, “Subdirekte Produkte und konjunkte Summen,”J. reine angew. Math.,239/240, 333–338 (1970).MathSciNetGoogle Scholar
  78. 79.
    R. Wille, “Subdirekte Produkte vollständiger Verbände,”J. reine angew. Math.,283/284, 53–70 (1976).MathSciNetGoogle Scholar
  79. 80.
    R. Wille, “Restructuring lattice theory: an approach based on hierarchies of concepts,” In:Ordered Sets (I. Rival, ed.), Reidel, Dordrecht-Boston, 445–470, (1982).Google Scholar
  80. 81.
    R. Wille, Subdirect decomposition of concept lattices,Algebra Universalis,17, No. 3, 275–287 (1983).MATHMathSciNetGoogle Scholar
  81. 82.
    R. Wille, “Liniendiagramme hierarchischer Begriffssysteme,” In:Anwendungen der Klassifikation: Datenanalyse und Numerische Klassifikation, (H. H. Bock, ed.), INDEKS-Verlag, Frankfurt, 32–51, (1984).Google Scholar
  82. 83.
    R. Wille, “Sur la fusion des contexts individuels,”Math. Sci. Hum.,85, 57–71 (1984).MATHMathSciNetGoogle Scholar
  83. 84.
    R. Wille, “Tensorial decomposition of concept lattices,”Order,2, 81–95 (1985).CrossRefMATHMathSciNetGoogle Scholar
  84. 85.
    R. Wille, “Finite distributive lattices as concept lattices,”Atti Inc. Logica Matematica (Siena),2, 635–648 (1985).MATHGoogle Scholar
  85. 86.
    R. Wille, “Complete tolerance relations of concept lattices,” In:Contributions to General Algebra Proceedings of a Conference, June 21–24, 1984, (B. G. Teubner, ed.), 397–415, (1985).Google Scholar
  86. 87.
    R. Wille, “Bedeutungen von Begriffsverbänden,” In:Beiträge zur Begriffsanalyse (B. Ganter, R. Wille, and K. E. Wolff, eds.), B.I.-Wissenschaftsverlag, Mannheim, 161–211, (1987).Google Scholar
  87. 88.
    R. Wille, “Subdirect product construction of concept lattices,”Discr. Math.,63, 305–313 (1987).CrossRefMATHMathSciNetGoogle Scholar
  88. 89.
    R. Wille, “Dependences between many-valued attributes,” In:Classification and Related Methods of Data Analysis (H. H. Bock, ed.), North-Holland, Amsterdam, 581–586, (1988).Google Scholar
  89. 90.
    R. Wille, “Geometric representation of concept lattices,” In:Conceptual and Numerical Analysis of Data (O. Opitz, ed.), Springer, Heidelberg, 239–255, (1989).Google Scholar
  90. 91.
    R. Wille, “Knowledge acquisition by methods of formal concept analysis,” In:Data Analysis, Learning Symbolic and Numeric Knowledge (E. Diday, ed.), Nova Sci. Publ., New York-Budapest, 365–380, (1989).Google Scholar
  91. 92.
    R. Wille, “Lattices in data analysis: how to draw them with a computer,” In:Algorithms and Order (I. Rival, ed.) Kluwer, Dordrecht-Boston, 33–58, (1989).Google Scholar
  92. 93.
    R. Wille, “The skeletons of free distributive lattices,”Discr. Math.,88, Nos. 2–3, 309–320 (1991).MATHMathSciNetGoogle Scholar
  93. 94.
    R. Wille, “Concept lattices and conceptual knowledge systems,”Comput. Math. Appl.,23, No. 6-9, 493–515 (1992).MATHGoogle Scholar
  94. 95.
    M. I. Zabezhailo, “On some exhaustive search problems that arise in automatic generation of hypotheses by the JSM-method,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 1, 28–31 (1988).Google Scholar
  95. 96.
    M. I. Zabezhailo, V. G. Ivashko, S. O. Kuznetsov, M. A. Mikheenkova, K. P. Khazanovskii, and O. M. Anshakov, “Algorithmic and program means of the JSM-method of automatic hypothesis generation,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 10, 1–14 (1987).Google Scholar
  96. 97.
    M. I. Zabezhailo, “To the problem of the extension of the JSM-method of automatic hypothesis generation to data with numeric parameters,”Nauchn. Tekh. Inf., Ser. 2 (Automat. Document. Math. Linguist.), No. 11, 11–21 (1992).Google Scholar
  97. 98.
    K. Zarankiewicz, “Problem P101,”Colloq. Math.,2, 301 (1951).Google Scholar
  98. 99.
    S. Znám, “On a combinatorial problem of K. Zarankiewicz,”Colloq. Math.,11, No. 1, 81–84 (1963)MATHMathSciNetGoogle Scholar
  99. 100.
    Š. Znám, “Two improvements of a result concerning a problem of K. Zarankiewicz,”Colloq. Math.,13, No. 2, 255–258 (1965).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. O. Kuznetsov

There are no affiliations available

Personalised recommendations