Advertisement

Mathematical Notes

, Volume 56, Issue 3, pp 931–947 | Cite as

Minimum of the absolute value of random trigonometric polynomials with coefficients ± 1

  • S. V. Konyagin
Article

Keywords

Trigonometric Polynomial Random Trigonometric Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Littlewood, “On polynomials\(\sum { \pm z^m ,} \sum {^m e^{\alpha _m i} z^i ,z = e^{\theta i} } \),”J. London Math. Soc.,41, 367–376 (1966).zbMATHMathSciNetGoogle Scholar
  2. 2.
    B. S. Kashin, “Properties of random trigonometric polynomials with coefficients ±1,”Vestn. Mosk. Univ. Ser. Mat.-Mekh., No. 5, 40–46 (1987).zbMATHMathSciNetGoogle Scholar
  3. 3.
    G. H. Hardy and E. M. Wright,Introduction to the Theory of Numbers (4th edition), Oxford University Press (1960).Google Scholar
  4. 4.
    R. N. Bhattacharya and R. Ranga Rao,Normal Approximation and Asymptotic Expansions [in Russian], Nauka, Moscow (1982).Google Scholar
  5. 5.
    K. I. Babenko,Foundations of Numerical Analysis [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. V. Konyagin
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations