Mathematical Notes

, Volume 56, Issue 3, pp 927–930 | Cite as

Integrable systems on the sphere with elastic interaction potentials

  • V. V. Kozlov
  • Yu. N. Fedorov


Interaction Potential Integrable System Elastic Interaction Elastic Interaction Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. Mozer, “Some aspects of integrable Hamiltonian systems,”Usp. Mat. Nauk,36, No. 5, 109–151.Google Scholar
  2. 2.
    A. P. Veselov, “Confocal Surfaces and Integrable Billiards on the Sphere and in the Lobachevskii Space,” Preprint. Forschungsinstitute für Mathematik, ETH Zürich.Google Scholar
  3. 3.
    J. Slawianowski, “Bertrand systems onSO(3, ℝ) andSU(2),”Bull. L'Acad. Polonaise Sci.,XXVIII, No. 2, 83–94 (1920).MathSciNetGoogle Scholar
  4. 4.
    V. Kozlov and A. Harin, “Kepler's problem in constant curvature spaces,”Celest. Mech. Dynam. Astron.,54, 393–399 (1992).CrossRefMathSciNetGoogle Scholar
  5. 5.
    V. V. Kozlov, “On dynamics in spaces of constant curvature,”Vestnik Mosk. Univ. Ser. Mat. Mekh. (to appear).Google Scholar
  6. 6.
    K. Jacobi,Lecture in Dynamics [in Russian], Gostekhizdat, Moscow-Leningrad (1936).Google Scholar
  7. 7.
    E. T. Whittaker,Analytical Dynamics [Russian translation], Gostekhizdat, Moscow-Leningrad (1937).Google Scholar
  8. 8.
    B. A. Dubrovin, “Theta-functions and nonlinear equations,”Usp. Mat. Nauk,32, No. 2, 11–80.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. V. Kozlov
    • 1
  • Yu. N. Fedorov
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations