Mathematical Notes

, Volume 56, Issue 4, pp 994–1007

Klein polyhedrals for two cubic Davenport forms

  • A. D. Bryuno
  • V. I. Parusnikov
Brief Communications

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Khinchin,Continued Fractions [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung,”Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., No. 3, 357–359 (1895).Google Scholar
  3. 3.
    F. Klein, “Sur une representation geometrique du developpement en fraction continue ordinaire,”Nouv. Ann. Math.,15, No. 3, 321–331 (1896).Google Scholar
  4. 4.
    F. Klein,Ausgewählte Kapitel der Zahlentheorie. Bd I. Einleitung. Vorlesungen 1895/1896 herausgegeben von A. Sommerfeld, Göttingen (1896).Google Scholar
  5. 5.
    J. F. Koksma,Diophantische Approximationen, Julius Springer, Berlin (1936).Google Scholar
  6. 6.
    A. V. Malyshev, “Markov's problem of spectrum,” in:Matem. Entsicloped, Vol. 3, Sov. Entsicl., Moscow (1983), pp. 514–516.Google Scholar
  7. 7.
    A. A. Markov,On Binary Quadratic Forms of Positive Determinant, St. Petersburg (1880); (1879); vol. 3 (1948).Google Scholar
  8. 8.
    H. Davenport, “On the product of three homogeneous linear forms. I,”Proc. London Math. Soc.,44, 412–431 (1938).MATHGoogle Scholar
  9. 9.
    H. Davenport, “Note on the product of three homogeneous linear forms,”J. London Math. Soc.,16, 98–101 (1941).MATHMathSciNetGoogle Scholar
  10. 10.
    H. Davenport, “On the product of three homogeneous linear forms. IV,”Proc. Cambridge Philos. Soc.,39, 1–21 (1943).MATHMathSciNetGoogle Scholar
  11. 11.
    G. F. Voronoy,On a Generalization of the Algorithm of Continued Fractions, Izd. Varsh. Univ., Varshava (1896); Collected Works in 3 Volumes, Vol. 1 [in Russian], Izd. Akad. Nauk Ukr, SSSR, Kiev (1952).Google Scholar
  12. 12.
    A. Godman and A. Takker,Polyhedral Convex Cones. Linear Inequalities [Russian translation], Nauka, Moscow (1959).Google Scholar
  13. 13.
    A. D. Bryuno,Local Method of Nonlinear Analysis of Differential Equations [in Russian], Nauka, Moscow (1979).Google Scholar
  14. 14.
    H. Minkovskii, “Generalization de la theorie des fractions continues,”Annales Sci. de l'Ecole Normale Superieure. Ser. 3,13, No. 2, 41–60 (1986); “Zur Theorie der Kettenbruche,” In:Gesammelte Abhandlungen. Vol. 1, Teubner-Leipzig-Berlin (1911), pp. 278–292.Google Scholar
  15. 15.
    L. J. Mordell, “The product of three homogeneous linear ternary forms,”J. London Math. Soc.,17, No. 2, 107–115 (1942).MATHMathSciNetGoogle Scholar
  16. 16.
    L. Charve, “De la reduction des formes quadratiques ternaires positives et de leur application aux irrationelles du troisieme degre,”Ann. Sci. Ecole Norm. Sup. Ser. 2. Supplement,9, 1–156 (1880).MathSciNetGoogle Scholar
  17. 17.
    T. W. Cusick, “Diophantine approximations of ternary linear forms,”Math. Comp.,25, No. 1, 163–180 (1971).MATHMathSciNetGoogle Scholar
  18. 18.
    T. W. Cusick, “Diophantine approximations of ternary linear forms. II,”Math. Comp.,26, No. 4, 977–993 (1972).MATHMathSciNetGoogle Scholar
  19. 19.
    T. W. Cusick, “Diophantine approximations of linear forms over algebraic number field,”Mathematika,20, No. 1, 16–23 (1973).MATHMathSciNetGoogle Scholar
  20. 20.
    B. F. Skubenko, “Minima of a decomposable cubic form of three variables,”Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),168, 125–139 (1988).MATHGoogle Scholar
  21. 21.
    B. F. Skubenko, “Minima of decomposable forms of degreen ofn variables forn≥3,”Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),183, 142–154 (1990).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. D. Bryuno
    • 1
    • 2
  • V. I. Parusnikov
    • 1
    • 2
  1. 1.M. V. Keldysh Institute of Applied MathematicsUSSR
  2. 2.Institute of MathematicsBelorussian Academy of SciencesMinsk

Personalised recommendations