Behavior Genetics

, Volume 26, Issue 2, pp 103–111

Assortative mating for relative weight: Genetic implications

  • David B. Allison
  • Michael C. Neale
  • Melissa I. Kezis
  • Vincent C. Alfonso
  • Stanley Heshka
  • Steven B. Heymsfield
Article

Abstract

Most work on the genetics of relative weight has not considered the role of assortative mating, i.e., mate selection based on similarity between mates. We investigated the extent to which engaged men and women in an archival longitudinal database were similar to each other in relative body weightprior to marriage and cohabitation. After controlling for age, a small but statistically significant mate correlation was found for relative weight (r=.13,p=.023), indicating some assortative mating. Furthermore, we examined whether mate similarity in relative weight prior to marriage predicts survival of the marriage. No significant effects were found. In sum, these results are consistent with those of other studies in suggesting that there is a small but significant intermate correlation for relative weight. However, they are unique in showing that these results cannot be explained on the basis of (a) cohabitation, (b) age similarity, or (c) selective survival of marriages between couples more similar in relative weight. The implications of these findings for heritability studies, linkage studies, and the estimation of shared environmental effects are discussed.

Key Words

Assortative mating heritability relative body weight genetics mate selection phenotypic variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, D. B., Heshka, S., Neale, M. C., Lykken, D. T., and Heymsfield, S. B. (1994a). A genetic analysis of relative weight among 4,020 twin pairs, with an emphasis on sex effects.Health Psychol.13(4):362–365.CrossRefGoogle Scholar
  2. Allison, D. B., Heshka, S., Neale, M. C., and Heymsfield, S. B. (1994b). Race effects in the genetics of adolescent's Body Mass Index.Int. J. Obesity 18:363–368.Google Scholar
  3. Andres, R. (1985). Mortality and obesity: The rationale for age-specific height-weight tables. In Andres, R., Bierman, E. L., and Hazzard, W. R. (eds.),Principles of Geriatric Medicine, McGraw-Hill, New York, pp. 311–318.Google Scholar
  4. Annest, J. L., Sing, C. F., Biron, P., and Mongeau, J. G. (1983). Familial aggregation of blood pressure and weight in adoptive families. III. Analysis of the role of shared genes and shared household environment in explaining family resemblance for height, weight and selected weight/height indices.Am. J. Epidemiol. 117:492–506.PubMedGoogle Scholar
  5. Becher, H. (1992). The concept of residual confounding in regression models and some applications.Stat. Med. 2: 1747–1758.Google Scholar
  6. Bollen, K. A., and Barb, K. H. (1981). Pearson's R and coarsely categorized measures.Am. Psychol. Rev. 46:232–239.Google Scholar
  7. Bouchard, C. (1989). Genetic factors in obesity.Med. Clin. North Am. 73:67–81.PubMedGoogle Scholar
  8. Bouchard, C. (1991). Current understanding of the etiology of obesity: Genetic and nongenetic factors.Am. J. Clin. Nutr. 53:1561S-1565S.PubMedGoogle Scholar
  9. Bouchard, C., Perusse, L., Leblanc, C., Tremblay, A., and Theriault, G. (1988). Inheritance of the amount and distribution of human body fat.Int. J. Obesity 12:205–215.Google Scholar
  10. Brook, C. G. D., Huntley, R. M. C., and Slack, J. (1975). Influence of heredity and environment in determination of skinfold thickness in children.Br. Med. J. 2:719–721.PubMedGoogle Scholar
  11. Buss, D. M. (1984). Marital assortment for personality dispositions: Assessment with three different data sources.Behav. Genet. 14:111–123.CrossRefPubMedGoogle Scholar
  12. Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies:Biometrics 24:295–313.PubMedGoogle Scholar
  13. Cohen, J. (1983). The cost of dichotomization.Appl. Psychol. Measure. 7:249–253.Google Scholar
  14. Eaves, L. J., Eysenck, H. J., and Martin, N. G. (1989).Genes, Culture and Personality: An Empirical Approach, Academic Press, New York.Google Scholar
  15. Friedlander, Y., Kasrk, J. D., Kaufman, N. A., Berry, E. M., and Stein, Y. (1988). Familial aggregation of body mass index in ethnically diverse families in Jerusalem. The Jerusalem lipid research clinic.Int. J. Obesity 12:237–247.Google Scholar
  16. Garn, S. M., Cole, P. E., and Bailey, S. M. (1979). Living together as a factor in familyline resemblances.Hum. Biol. 51:565–587.PubMedGoogle Scholar
  17. Gimelfarb, A. (1988). Processes of pair formation leading to assortative mating in biological populations: Dynamic interaction modelTheoret. Popul. Biol. 34:1–23.Google Scholar
  18. Grilo, C. M., and Pogue-Geile, M. F. (1991). The nature of environmental influences on weight and obesity: A behavior genetic analysis.Psychol. Bull. 110:520–537.CrossRefPubMedGoogle Scholar
  19. Harrison, G. A., Gibson, J. B., and Hiorns, R. W. (1976). Assortative marriage for psychometric, personality, and anthropometric variation in a group of Oxfordshire villages.J. Biosoc. Sci. 8:145–153.PubMedGoogle Scholar
  20. Hartz, A., Giefer, E., and Rimm, A. A. (1977). Relative importance of the effect of family environment and heredity on obesity.Ann. Hum. Genet. 41:185–193.PubMedGoogle Scholar
  21. Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and marker locus.Behav. Genet. 2(1):3–19.CrossRefPubMedGoogle Scholar
  22. Hedrick, P. W. (1985).Genetics of Populations, Jones and Bartlett, Boston.Google Scholar
  23. Heymsfield, S. B., Lichtman, S., Baumgartner, R. N., Dilmanian, A., and Kamen, Y. (1992). Assessment of body composition: An overview. In Bjomttorp, P., and Brodoff, B. N. (eds.),Obesity, J. P. Lippincott, Philadelphia, pp. 37–54.Google Scholar
  24. Heymsfield, S. B., Allison, D. B., Heshka, S., and Pierson, R. N. (1995). Assessment of human body composition. InHandbook of Assessment Methods for Eating Behaviors and Weight Related Problems, Sage, Beverly Hills, CA.Google Scholar
  25. Hodge, S. E. (1992). So bilineal pedigrees represent a problem for linkage analysis? Basic principles and simulation results for single-gene diseases with no heterogeneity.Genet. Epidemiol. 9:191–206.CrossRefPubMedGoogle Scholar
  26. Hutchinson, J., and Byard, P. J. (1987). Family resemblance for anthropometric and blood pressure measurements in Black Caribs and Creoles from St. Vincent Island.Am. J. Phys. Anthropol. 73:33–39.CrossRefPubMedGoogle Scholar
  27. Johnston, R. E. (1970). Phenotypic assortative mating among the Peruvian Cashinahua.Soc. Biol. 17:37–42.PubMedGoogle Scholar
  28. Kelly, E. L. (1935).The Kelly Longitudinal Study, Henry A. Murray Research Center, Radcliffe College, Cambridge, MA.Google Scholar
  29. Korkeila, M., Kaprio, J., Rissanen, A., and Koskenvuo, M. (1991). Effects of gender and age on the heritability of body mass index.Int. J. Obesity 15:647–654.Google Scholar
  30. Kuczmarski, R. J., Flegal, K. M., Campbell, S. M., and Johnson, C. L. (1994). Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991.JAMA 272: 205–211.CrossRefPubMedGoogle Scholar
  31. Malina, R. M., Selby, H. A., Buscang, P. H., Aronson, W. L., and Little, B. B. (1983). Assortative mating for phenotypic characteristics in a Zapotec community in Oaxaca, Mexico.J. Biosoc. Sci. 15:273–280.PubMedGoogle Scholar
  32. Mason, E. (1970). Obesity in pet dogs.Vet. Rec. 86:612–616.PubMedGoogle Scholar
  33. Mascie-Taylor, C. G. N. (1988). Assortative mating for psychometric characters. In Mascie-Taylor, G. C. N., and Boyce, A. J. (eds.),Human Mating Patterns. Society for the Study of Human Biology Symposium Series 28, Cambridge University Press, New York, pp. 61–82.Google Scholar
  34. Meier, R. J. (1990). Assortative mating in monozygotic twins.Soc. Biol. 37:128–136.PubMedGoogle Scholar
  35. Neale, M. C., and Cardon, L. R. (1992).Methodology for Genetic Studies of Twins and Families, Kluwer Academic, Dorchrect, The Netherlands.Google Scholar
  36. Ott, J. (1991).Analysis of Human Genetic Linkage, Johns Hopkins University Press, London, pp. 25, 218–219.Google Scholar
  37. Peters, C. C., and Van Voorhis, W. R. (1940).Statistical Procedures and Their Mathematical Bases, McGraw-Hill, New York.Google Scholar
  38. Plomin, R., DeFries, J. C., and Roberts, M. K. (1977). Assortative mating by unwed biological parents of adopted children.Science 196:449–450.PubMedGoogle Scholar
  39. Plomin, R., DeFries, J. K., and McClearn, G. (1990).Behavioral Genetics, 2nd ed., W. H. Freeman, New York.Google Scholar
  40. Price, R. A., and Vandenberg, S. G. (1980). Spouse similarity in American and Swedish couples.Behav. Genet. 10:59–71.CrossRefPubMedGoogle Scholar
  41. Price, R. A., Cadoret, R. J., Stunkard, A. J., and Troughton, E. (1987). Genetic contributions to human fatness: An adoption study.Am. J. Psychiat. 144:1003–1008.PubMedGoogle Scholar
  42. Shapiro, J., Gilborn, N., and Groture, J. (1991).A Guide to Data Resources, Henry A. Murray Research Center, Radcliffe College, Cambridge, MA.Google Scholar
  43. Sorenson, T. I., Holst, C., Stunkard, A. J., and Skovgaard, L. T. (1992). Correlations of body mass index of adult adoptees and their biologic and adoptive relatives.Int. J. Obesity 16:227–236.Google Scholar
  44. Spuhler, J. N. (1968). Assortative mating with respect to physical characteristics.Eugen. Q. 15:128–140.PubMedGoogle Scholar
  45. Sribney, W. M., and Swift, M. (1992). Power of sib-pair and sib-trio linkage analysis with assortative mating and multiple disease loci.Am. J. Hum. Genet. 51:773–784.PubMedGoogle Scholar
  46. Stark, A. E., Salzano, F. M., and Da Rocha, F. J. (1990). Marital correlation for anthropometric characteristics in Brzzilian Indians.Ann. Hum. Biol. 47:417–422.Google Scholar
  47. Stunkard, A. J., Foch, T. T., and Hrubec, Z. (1986). A twin study of human obesity.JAMA 256:51–54.CrossRefPubMedGoogle Scholar
  48. Stunkard, A. J., Harris, J. R., Pederson, N. L., and McClearm, G. E. (1990). The body-mass index of twins who have been reared apart.N. Engl. J. Med. 322:1438–1437.Google Scholar
  49. Susanne, C. (1979). Assortative mating: Biodemographical structure of human populations.J. Hum. Evol. 8:799–804.CrossRefGoogle Scholar
  50. Sutton, G. C. (1993). Do men grow to resemble their wives, or vice versa?.J. Biosoc. Sci. 25:25–29.PubMedGoogle Scholar
  51. Tambs, K., Moum, T., Eaves, L. J., Neale, M. C., Mikthjell, K., Naess, S., and Holmen, J. (1991). Genetic and environmental contributions to the variance of body mass index in a large sample of first and second degree relatives.Am. J. Hum. Biol. 3:257–267.CrossRefGoogle Scholar
  52. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Positional cloning of the mouseobese gene and its human homologue.Nature 372: 425–432.PubMedGoogle Scholar
  53. Zonata, C. A., Jayakar, S. D., Bossio, M., Galante, A., and Pennetti, V. (1987). Genetic analysis of obesity in an Italian sample.Hum. Hered. 37:129–139.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • David B. Allison
    • 1
  • Michael C. Neale
    • 2
  • Melissa I. Kezis
    • 1
  • Vincent C. Alfonso
    • 3
  • Stanley Heshka
    • 1
  • Steven B. Heymsfield
    • 1
  1. 1.Obesity Research Center, Saint Luke's/Roosevelt HospitalColumbia University College of, Physicians and SurgeonsNew York
  2. 2.Department of Psychiatric GeneticsMedical College of VirginiaRichmond
  3. 3.Graduate School of Education, Division of Psychological and Educational ServicesFordham UniversityThe Bronx

Personalised recommendations