Behavior Genetics

, Volume 26, Issue 4, pp 427–437 | Cite as

Vocalizations in newborn mice: Genetic analysis

  • Pierre L. Roubertoux
  • Benoît Martin
  • Isbelle Le Roy
  • Jacques Beau
  • Fernando Perez-Diaz
  • Charles Cohen-Salmon
  • Catherine Marchaland
  • Michèle Carlier
Article

Abstract

Two kinds of vocalizations are produced by newborn mice: whistles (between 50 and 150 ms in length), having a narrow bandwidth in each strain that ranges from 30 to 90 kHz; and clicks, which are shorter (about 1 ms) and have a larger bandwidth. These vocalizations were individually recorded in 1-day-old pups from seven inbred strains of laboratory mice, at two temperatures (23±0.5 and 15±0.5°C). The numbers of clicks and whistles were counted under these two conditions. Moreover, the length and frequencies at the beginning, apex, and end of the whistles were measured during the 15°C condition. Correlations, including several components—additivity, epistasis (between homozygous loci), and maternal environment—were calculated between the characteristics of the whistles during the 15°C condition. Clicks and whistles were also counted from 1 to 8 days of age during the 15°C condition. The numbers of clicks and whistles were age dependent, with a decrease from day 1 to day 8 for the clicks and a consistent production of whistles. A quantitative genetic analysis was also performed on the 1-day-old pups from the mendelian generations produced by the inbred strains most contrasting for the number of whistles produced in the cold condition: NZB/BINJ and CBA/H. The heterozygous genotype of the mother induced an increment of the number of whistles. Moreover, a significant part of the additive variance was suspected from the first design, and found with the second one, for this variable. Quantitative genetic analysis showed significant dominance and epistasis between homozygous loci and homozygous and heterozygous loci. This points to multigenic correlates for the number of whistles in this population. The significant additive values for all the variables recorded during the 15±0.5°C condition and for the number of whistles produced during the 23±0.5°C condition are compatible with an effect the indicates neither directional nor stabilizing selection. This results is examined in the light of the multichannel sensorial process implicated in maternal behavior in mice.

Key words

Vocalizations ultrasounds development newborn mice NZB/BINJ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beach, F. A., and Jaynes, J. (1956). Studies of maternal behavior in rats. III. Sensory cues involved in the lactating female's response to her young.Behaviour 10:104–125.Google Scholar
  2. Bell, R. W., Nitschke, W., and Zachman, T. A. (1972). Ultrasounds in three inbred strains of young mice.Behav. Biol. 7:805–814.CrossRefPubMedGoogle Scholar
  3. Bell, R. W., Nitschke, W., Gorry, T. H., and Zachman, T. A. (1971). Infantile stimulation and ultrasonic signaling: A possible mediator of early handling phenomena.Dev. Psychobiol. 4:181–191.CrossRefPubMedGoogle Scholar
  4. Bolivar, V. J., and Brown, R. E. (1994). The ontogeny of ultrasonic vocalizations and other behaviors in male jimpy (jp/Y) mice and their normal male littermates.Dev. Psychobiol. 27: 101–110.CrossRefPubMedGoogle Scholar
  5. Bruell, J. H. (1964). Inheritance of behavioral and physiological characteris of mice and the problem of heterosis.Am. Zool. 4:125–128.Google Scholar
  6. Carlier, M., Moutier, R., Arecchi, P., and Roubertoux, P. L. (1993). Search for biobehavioral correlates of polymorphism for mtDNA in the laboratory mouse.Behav. Genet. 23:549.Google Scholar
  7. Carlier, M., Nosten-Bertrand, M., and Michard, Ch. (1992). Separating genetic effects from maternal environmental effects. In Goldowitz, D., Wahlsten, D., and Wimer, R. (eds.),Techniques for the Genetic Analysis of the Brain and Behavior: Focus on the Mouse, Elsevier, Amsterdam, 1992, pp. 111–126.Google Scholar
  8. Carlier, M., Roubertoux, P. L., and Cohen-Salmon, Ch. (1982). Differences in patterns of pup care in Mus musculus domesticus: I. Comparisons between eleven inbred strains.Behav. Neural Biol. 35:205–210.PubMedGoogle Scholar
  9. Carlier, M., Roubertoux, P. L., Kottler, M. L., and Degrelle, H. (1990). Y-chromosome and aggression in strains of laboratory mice.Behav. Genet. 20:137–156.PubMedGoogle Scholar
  10. Cohen-Salmon, Ch. (1988). What role does sensory perception play in the onset and maintance of pup care behavior in laboratory rodents?Eur. Bull. Cognit. Psychol. 8:53–94.Google Scholar
  11. Cohen-Salmon, Ch., Carlier, M., Roubertoux, P. L., Jouhaneau, J., Semal, C., and Paillette, M. (1985). Differences in patterns of pup care in mice. V. Pup ultrasonic emissions and pup care behavior.Physiol. Behav. 35:167–174.CrossRefPubMedGoogle Scholar
  12. Crusio, W. E. (1990). HOMAL: A computer program for selecting adequate data transformations.J. Hered. 81:173.Google Scholar
  13. Crusio, W. E. (1991). COMPVAR: A computer program for iteratively estimating components of variance in crossbreeding experiments.J. Hered. 82:359.PubMedGoogle Scholar
  14. D'Udine, B., Robinson, D. J., and Oliverio, A. (1982). An analysis of single-gene effects on audible and ultrasonic vocalizations in the mouse.Behav. Neurol Biol. 36:197–203.Google Scholar
  15. Elwood, R. W., and McCawley, P. J. (1983). Communication in rodents: Infants to adults. In Elwood, R. W. (eds.),Parental Behavior of Rodents, Wiley, New York, pp. 127–149.Google Scholar
  16. Hahn, M. E., Hewitt, J. K., Adams, M., and Tully, T. (1987). Genetic influences of ultrasonic vocalizations in young mice.Behav. Genet. 17:155–166.CrossRefPubMedGoogle Scholar
  17. Hegmann, J. P., and Possidente, B. (1981). Estimating genetic correlations from inbred strains.Behav. Genet. 11:103–113.CrossRefPubMedGoogle Scholar
  18. Jans, J. E., and Leon, M. (1983). Determinants of mother-young contact in Norway rats.Physiol. Behav. 30:919–935.PubMedGoogle Scholar
  19. Kerbusch, J. M. L., van der Staay, F. J., and Hendricks, N. (1981); A searching procedure for transformation and models in a classical mendelian cross breeding study.Behav. Genet. 11:239–254.PubMedGoogle Scholar
  20. Lerner, M. (1954).Genetic Homeostasis, Oliver and Boyd, Edinburgh.Google Scholar
  21. Mather, K., and Jinks, J. L. (1971).Biometrical Genetics, 2nd ed., Chapman and Hall, London.Google Scholar
  22. Nitschke, W., and Bell, R. W. (1974). Effects of hypothermia upon neonatal ultrasounds in 3 inbred strains of Mus musculus.Am. Zool.,11:634.Google Scholar
  23. Noirot, E. (1972). Ultrasounds and maternal behavior in small rodents.Dev. Psychobiol. 5:371–387.CrossRefPubMedGoogle Scholar
  24. Okon, E. E. (1970). The effect of environmental temperature on the production of ultrasounds by isolated non-handled albino mouse pups.J. Zool. London 162:71–83.Google Scholar
  25. Oswalt, G. S., and Meier, G. W. (1975). Olfactory thermal and tactual influences on infantile ultrasonic vocalizations in rats.Dev. Psychobiol. 8:129–135.CrossRefPubMedGoogle Scholar
  26. Ralls, K. (1967). Auditory sensitivity in mice:Peromiscus andMus musculus.Anim. Behav. 15:123–128.PubMedGoogle Scholar
  27. Roberts, L. H. (1975). The rodent ultrasound production mechanism.Ultrasonics 13:83–88.CrossRefPubMedGoogle Scholar
  28. Robinson, D. J., and D'Udine, B. (1982). Ultrasonic calls produced by three laboratory strains of Mus musculus.J. Zool. London 197:383–389.Google Scholar
  29. Rosenblatt, J. S. (1967). Non hormonal basis of maternal behavior in the rat.Science 156:1512–1514.PubMedGoogle Scholar
  30. Rosenblatt, J. S., Siegel, H. I., and Mayer, A. D. (1979). Progress in the study of maternal behavior in the rat: Hormonal, nonhormonal, sensory, and developmental aspects.Adv. Study Bahv.,10:225–311.Google Scholar
  31. Roubertoux, P. L. (1981). Rôle des comportements dans les mécanismes évolutifs. Mémoire, conditionnement, évolution.Publ. Sorbonne 18:45–58.Google Scholar
  32. Roubertoux, P. L. (1993): Courtship behavior in the male guppy (Poecilia reticulata): Quantitative genetic analysis and directional selection.Int. J. Comp. Psychol. 5:145–163.Google Scholar
  33. Roubertoux, P. L., Carlier, M., Cohen-Salmon, Ch., and Jouhaneau, J. (1984). Correlations between retrieving behavior in females and ultrasonic vocalizations in newborn mice.Acta Zool. Fennica 171:101–102.Google Scholar
  34. Roubertoux, P. L., Nosten-Bertrand, M., and Carlier, M. (1990). Additive and interactive effects between genotype and maternal environments, concepts and facts.Adv. Study Behav. 19:205–247.Google Scholar
  35. Smith, J. C. (1976). Responses of adult mice to models of infant calls.J. Comp. Physiol. Psychol. 90:1105–1115.Google Scholar
  36. Smotherman, W. P., Bell, R. W., Starzec, J., Elias, J., and Zachman, T. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice.Behav. Biol. 12:55–66.CrossRefPubMedGoogle Scholar
  37. Yonekawa, H. K., Moriwaki, Gotoh, O., Miyashita, N., Migita, S., Bonhomme, F., Hjorth, J. P., Petras, M. L., and Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA,Differentiation 22:222–226.PubMedGoogle Scholar
  38. Zippelius, H. M., and Schleidt, W. M. (1956). Ultraschallaute bei Jungen Mäusen.Naturwissenschaften 43:502–503.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Pierre L. Roubertoux
    • 1
    • 2
  • Benoît Martin
    • 1
  • Isbelle Le Roy
    • 1
  • Jacques Beau
    • 1
  • Fernando Perez-Diaz
    • 1
  • Charles Cohen-Salmon
    • 1
  • Catherine Marchaland
    • 1
  • Michèle Carlier
    • 1
  1. 1.URA CNRS 1294, Génétique, Neurogénétique et Comportement, UFR BiomédicaleUniversité Paris V-René DescartesParis Cedex 06France
  2. 2.CDTA CNRS and Université d'OrléansFrance

Personalised recommendations