Behavior Genetics

, Volume 26, Issue 3, pp 221–240 | Cite as

Light, immediate-early genes, and circadian rhythms

  • Jon M. Kornhauser
  • Kelly E. Mayo
  • Joseph S. Takahashi


Many diverse behaviors exhibit clear circadian rhythms in their expression. In mammals, these rhythms originate from a neural circadian clock located in the suprachiasmatic nuclei (SCN). Recently, signaling pathways activated by light in the SCN have begun to be identified. A specific set of immediate-early genes is induced by light in the SCN, and their expression is correlated with the resetting of circadian behavioral rhythms. These light-regulated immediate-early genes offer multiple inroads into the biology of the SCN: first, they are functional markers for the activation of SCN neurons by light; second, they can direct us to the upstream light-activated (and clock-regulated) signal transduction pathways which mediate their induction; and finally, they encode transcription factor proteins which may play a role in the molecular mechanism of resetting the circadian clock.

Key Words

Suprachiasmatic nucleus circadian rhythms Fos immediate-early gene cyclic AMP-response element CREB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Rusak, B., and Robertson, H. A. (1991). Photic induction of Fos protein in the suprachiasmatic nucleus is inhibited by the NMDA receptor antagonist MK-801.Neurosci. Lett. 127:9–12.CrossRefPubMedGoogle Scholar
  2. Abe, H., Rusak, B., and Robertson, H. A. (1992). NMDA and non-NMDA receptor antagonists inhibit photic induction of Fos protein in the hamster suprachiasmatic nucleus.Brain Res. Bull. 28:831–835.CrossRefPubMedGoogle Scholar
  3. Albers, H. E., Minamitani, N., Stopa, E., and Ferris, C. F. (1987). Light selectively alters vasoactive intestinal peptide and peptide histidine isoleucine immunoreactivity within the rat suprachiasmatic nucleus.Brain Res. 437: 189–192.CrossRefPubMedGoogle Scholar
  4. Albers, H. E., Stopa, E. G., Zoeller, R. T., Kauer, J. S., King, J. C., Fink, J. S., Mobtaker, H., and Wolfe, H. (1990). Day-night variation in prepro vasoactive intestinal peptide/peptide histidine isoleucine mRNA within the rat suprachiasmatic nucleus.Mol. Brain Res. 7:85–89.CrossRefPubMedGoogle Scholar
  5. Albers, H. E., Liou, S. Y., Stopa, E. G., and Zoeller, R. T. (1991). Interaction of colocalized neuropeptides: Functional significance in the circadian timing system.J. Neurosci. 11:846–851.PubMedGoogle Scholar
  6. Aronin, N., and Schwartz, W. J. (1991). A new strategy to explore molecular mechanisms of suprachiasmatic nucleus function. In Klein, D. C., Moore, R. Y., and Reppert, S. M. (eds.)Suprachiasmatic Nucleus: The Mind's Clock, Oxford University Press, New York, pp. 445–456.Google Scholar
  7. Aronin, N., Sagar, S. M., Sharp, F. R., and Schwartz, W. J. (1990). Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei.Proc. Natl. Acad. Sci. USA 87:5959–5962.PubMedGoogle Scholar
  8. Aronson, B. D., Johnson, K. A., Loros, J. J., and Dunlap, J. C. (1994). Negative feedback defining a circadian clock: Autoregulation of the clock genefrequency.Science 263: 1578–1584.PubMedGoogle Scholar
  9. Bading, H., Ginty, D. D., and Greenberg, M. E. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways.Science 260:181–186.PubMedGoogle Scholar
  10. Bartel, D. P., Sheng, M., Lau, L. F., and Greenberg, M. E. (1989). Growth factors and membrane depolarization activate distinct programs of early response gene expression: Dissociation offos andjun induction.Genes Dev. 3:304–313.PubMedGoogle Scholar
  11. Bohmann, D., Bos, T. J., Admon, A., Nishimura, T., Vogt, P. K., and Tjian, R. (1987). Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1.Science 238: 1386–1392.PubMedGoogle Scholar
  12. Cahill, G. M., and Menaker, M. (1987). Kynurenic acid blocks suprachiasmatic nucleus responses to optic nerve stimulation.Brain Res. 410:125–129.PubMedGoogle Scholar
  13. Card, J. P., and Moore, R. Y. (1984). The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution.Neuroscience 13: 415–531.CrossRefPubMedGoogle Scholar
  14. Card, J. P., Brechna, N., Karten, H. J., and Moore, R. Y. (1981). Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: Light and electron microscopic analysis.J. Neurosci. 1:1289–1303.PubMedGoogle Scholar
  15. Cassone, V. M., Speh, J. C., Card, J. P., and Moore, R. Y. (1988). Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus.J. Biol. Rhythms 3:71–91.PubMedGoogle Scholar
  16. Chambille, I., Doyle, S., and Servière, J. (1993). Photic induction and circadian expression of Fos-like protein. Immunohistochemical study in the retina and suprachiasmatic nuclei of hamster.Brain Res. 612:138–150.CrossRefPubMedGoogle Scholar
  17. Chiu, R., Angel, P., and Karin, M. (1989). Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun.Cell 59:979–986.CrossRefPubMedGoogle Scholar
  18. Colwell, C. S., and Foster, R. (1991). The NMDA receptor antagonist MK-801 inhibits light-induced changes in Fos-like immunoreactivity in the mouse suprachiasmatic nucleus.Soc. Neurosci. Abstr. 17:668.Google Scholar
  19. Colwell, C. S., and Foster, R. G. (1992). Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse.J. Comp. Neurol. 324:135–142.CrossRefPubMedGoogle Scholar
  20. Colwell, C. S., and Menaker, M. (1992). NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster.J. Biol. Rhythms 7:125–136.PubMedGoogle Scholar
  21. Colwell, C. S., Ralph, M. R., and Menaker, M. (1990). Do NMDA receptors mediate the effects of light on circadian behavior?Brain Res 523:117–120.CrossRefPubMedGoogle Scholar
  22. Colwell, C. S., Kaufman, C. M., and Menaker, M. (1993). Phase-shifting mechanisms in the mammalian circadian system: New light on the carbachol paradox.J. Neurosci. 13:1454–1459.PubMedGoogle Scholar
  23. Comb, M., Birnberg, N. C., Seasholtz A., Herbert, E., and Goodman, H. M. (1986). A cyclic AMP-and phorbol ester-inducible DNA element.Nature 323:353–356.CrossRefPubMedGoogle Scholar
  24. Craner, S. L., Lund, J. S., Hoffman, G. E., and Lund, R. D. (1991). Moving visual stimuli induce cFos expression in the visual cortices of the rat.Soc. Neurosci. Abstr. 17: 115.Google Scholar
  25. Craner, S. L., Hoffman, G. E., Lund, J. S., Humphrey, A. L., and Lund, R. D. (1992). cFos labeling in rat superior colliculus: Activation by normal retinal pathways and pathways from intracranial retinal transplants.Exp. Neurol. 117:219–229.CrossRefPubMedGoogle Scholar
  26. Curran, T., and Franza, B. R., Jr. (1988). Fos and Jun: The AP-1 connection.Cell 55:395–397.CrossRefPubMedGoogle Scholar
  27. Curran, T., Rauscher, F. J., Cohen, D. R., and Franza, B. R. (1988). Beyond the second messenger: Oncogenes and transcription factors.Cold Spring Harbor Symp. Quant. Biol. 53:769–777.PubMedGoogle Scholar
  28. Daan, S., and Pittendrigh, C. S. (1976). A functional, analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves.J. Comp. Physiol. 106: 253–266.Google Scholar
  29. Diamond, M. I., Miner, J. N., Yoshinaga, S. K., and Yamamoto, K. R. (1990). Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element.Science 249:1266–1272.PubMedGoogle Scholar
  30. Dunlap, J. C. (1990). Closely watched clocks: Molecular analysis of circadian rhythms inNeurospora andDrosophila.Trends Genet. 6:159–165.CrossRefPubMedGoogle Scholar
  31. Earnest, D. J., and Turek, F. W. (1985). Neurochemical basis for the photic control of circadian rhythms and seasonal reproduction cycles: Role for acetylcholine.Proc. Natl. Acad. Sci. USA 82:4277–4281.PubMedGoogle Scholar
  32. Earnest, D. J., and Olschowka, J. A. (1993). Circadian regulation of c-fos expression in the suprachiasmatic pacemaker by light.J. Biol. Rhythms 8:S65-S71.PubMedGoogle Scholar
  33. Earnest, D. J., Iadarola, M., Yeh, H. H., and Olschowka, J. A. (1990). Photic regulation of c-fos expression in neural components governing the entrainment of circadian rhythms.Exp. Neurol. 109:353–361.CrossRefPubMedGoogle Scholar
  34. Earnest, D. J., Ouyang, S., and Olschowka, J. A. (1992). Rhythmic expression of Fos-related proteins in the rat suprachiasmatic nucleus during constant retinal illumination.Neurosci. Lett. 140:19–24.CrossRefPubMedGoogle Scholar
  35. Ebling, F. J. P., Maywood, E. S., Staley, K., Humby, T., Hancock, D. C., Waters, C. M., Evan, G. I., and Hastings, M. H. (1991). The role ofN-methyl-d-aspartate-type glutamatergic neurotransmission in the photic induction of immediate-early gene expression in the suprachiasmatic nuclei of the Syrian hamster.J. Neuroendocrinol. 3:641–652.Google Scholar
  36. Edery, I., Rutila, J. E., and Rosbash, M. (1994). Phase shifting of the circadian clock by induction of theDrosophila period protein.Science 263:237–240.PubMedGoogle Scholar
  37. Fink, J. S., Verhave, M., Walton, K., Mandel, G., and Goodman, R. H. (1991). Cyclic AMP- and phorbol ester-induced transcriptional activation are mediated by the same enhancer element in the human vasoactive intestinal peptide gene.J. Biol. Chem. 266:3882–3887.PubMedGoogle Scholar
  38. Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenberg, M. E. (1993). Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock.Science 260:238–241.PubMedGoogle Scholar
  39. Grassi-Zucconi, G., Menegazzi, M., Carcereri De Prati, A., Bassetti, A., Montagnese, P., Mandile, P., Cosi, C., and Bentivoglio, M. (1993). c-fos mRNA is spontaneously induced in the rat brain during the activity period of the circadian cycle.Eur. J. Neurosci. 5:1071–1078.PubMedGoogle Scholar
  40. Greenberg, M. E., and Ziff, E. B. (1984). Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene.Nature 311:433–437.CrossRefPubMedGoogle Scholar
  41. Guthrie, K. M., Anderson, A. J., Leon, M., and Gall, C. (1993). Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb.Proc. Natl. Acad. Sci. USA 90:3329–3333.PubMedGoogle Scholar
  42. Hardin, P. E., Hall, J. C., and Rosbash, M. (1990). Feedback of theDrosophila period gene product on circadian cycling of its messenger RNA levels.Nature 343:536–540.CrossRefPubMedGoogle Scholar
  43. Hardin, P. E., Hall, J. C., and Rosbash, M. (1992). Circadian oscillations inperiod gene mRNA levels are transcriptionally regulated.Proc. Natl. Acad. Sci. USA 89:11711–11715.PubMedGoogle Scholar
  44. Hazel, T. G., Nathans, D., and Lau, L. F. (1988). A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily.Proc. Natl. Acad. Sci. USA 85:8444–8448.PubMedGoogle Scholar
  45. Hedrick, S. M., Cohen, D. I., Nielsen, E. A., and Davis, M. M. (1984). Isolation of cDNA clones encoding T cell-specific membrane-associated proteins.Nature 308:149–153.PubMedGoogle Scholar
  46. Hunt, S. P., Pini, A., and Evan, G. (1987). Induction of c-fos like protein in spinal cord neurons following sensory stimulation.Nature 328:632–634.CrossRefPubMedGoogle Scholar
  47. Inouye, S. T., Takahashi, J. S., Wollnik, F., and Turek, F. W. (1988). Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN.Am. J. Physiol. 255:R1055-R1058.PubMedGoogle Scholar
  48. Janik, D., and Mrosovsky, N. (1992). Gene expression in the geniculate induced by a nonphotic circadian phase shifting stimulus.Neuroreport 3:575–578.PubMedGoogle Scholar
  49. Johnson, R. F., Morin, L. P., and Moore, R. Y. (1988). Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin.Brain Res. 462:301–312.CrossRefPubMedGoogle Scholar
  50. Keefe, D. L., Earnest, D. J., Nelson, D., Takahashi, J. S., and Turek, F. W. (1987). A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster.Brain Res. 403:308–312.CrossRefPubMedGoogle Scholar
  51. Kerppola, T. K., and Curran, T. (1991). Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations: Implications for transcription factor cooperativity.Cell 66:317–326.CrossRefPubMedGoogle Scholar
  52. Kilduff, T. S., Landel, H. B., Nagy, G. S., Sutin, E. L., Dement, W. C., and Heller, H. C. (1992). Melatonin influences Fos expression in the rat suprachiasmatic nucleus.Mol. Brain Res. 16:47–56.CrossRefPubMedGoogle Scholar
  53. Kononen, J., Koistinaho, J., and Alho, H. (1990). Circadian rhythm in c-fos-like immunoreactivity in the rat brain.Neurosci. Lett. 120:105–108.CrossRefPubMedGoogle Scholar
  54. Kornhauser, J. M., Nelson, D. E., Mayo, K. E., and Takahashi, J. S. (1990). Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus.Neuron 5:127–134.CrossRefPubMedGoogle Scholar
  55. Kornhauser, J. M., Nelson, D. E., Mayo, K. E., and Takahashi, J. S. (1992). Regulation ofjun-B messenger RNA and AP-1 activity by light and a circadian clock.Science 255: 1581–1584.PubMedGoogle Scholar
  56. Kornhauser, J. M., Ginty, D. D., Mayo, K. E., Greenberg, M. E., and Takahashi, J. S. (1993a). Use of phosphopeptide-specific antibodies against CREB and SRF in the suprachiasmatic nucleus.Soc. Neurosci. Abstr. 19:1703.Google Scholar
  57. Kornhauser, J. M., Mayo, K. E., and Takahashi, J. S. (1993b). Immediate-early gene expression in a mammalian circadian pacemaker: The suprachiasmatic nucleus. In Young, M. W. (ed.),Molecular Genetics of Biological Rhythms, Marcel Dekker, New York, pp. 271–307.Google Scholar
  58. Kruijer, W., Schubert, D., and Verma, I. M. (1985). Induction of the proto-oncogenefos by nerve growth factor.Proc. Natl. Acad. Sci. USA 82:7330–7334.PubMedGoogle Scholar
  59. Lau, L. F., and Nathans, D. (1987). Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: Coordinate regulation with c-fos or c-myc.Proc. Natl. Acad. Sci. USA 84:1182–1186.PubMedGoogle Scholar
  60. Lebacq-Verheyden, A.-M., Way, J., and Battey, J. (1990). Structural characterization of a brain-specific promoter region directing transcription of the rat prepro-gastrin-releasing peptide gene.Mol. Brain Res. 7:235–241.CrossRefPubMedGoogle Scholar
  61. Lee, W., Haslinger, A., Karin, M., and Tjian, R. (1987). Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40.Science 325:368–372.Google Scholar
  62. Lee, W.-S., Smith, M. S., and Hoffman, G. E. (1990). Luteinizing hormone-releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone.Proc. Natl. Acad. Sci. USA 87:5163–5167.PubMedGoogle Scholar
  63. Liang, P., and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257:967–971.PubMedGoogle Scholar
  64. Liou, S. Y., Shibata, S., Iwasaki, K., and Ueki, S. (1986). Optic nerve stimulation induced increase of release of3H-glutamate and3H-aspartate but not3H-GABA from the suprachiasmatic nucleus in sclices of rat hypothalamus.Brain Res. Bull. 16:527–531.CrossRefPubMedGoogle Scholar
  65. Mason, R., and Rusak, B. (1991). NMDA-evoked responses in the Syrian hamster suprachiasmatic nucleus in vitro.J. Physiol. 435:39p.Google Scholar
  66. Mead, S., Ebling, F. J., Maywood, E. S., Humby, T., Herbert, J., and Hastings, M. H. (1992). A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of c-fos in the suprachiasmatic nuclei.J. Neurosci. 12:2516–2522.PubMedGoogle Scholar
  67. Meijer, J. H., and Rietveld, W. J. (1989). Neurophysiology of the suprachiasmatic circadian pacemaker in rodents.Physiol. Rev. 69:671–707.PubMedGoogle Scholar
  68. Meijer, J. H., van der Zee, E. A., and Dietz, M. (1988). Glutamate phase shifts circadian activity rhythms in hamsters.Neurosci. Lett. 86:177–183.CrossRefPubMedGoogle Scholar
  69. Milbrandt, J. (1986). Nerve growth factor rapidly induces c-fos mRNA in PC12 rat pheochromocytoma cells.Proc. Natl. Acad. Sci. USA 83:4789–4793.PubMedGoogle Scholar
  70. Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor.Science 238:797–799.PubMedGoogle Scholar
  71. Milbrandt, J. (1988). Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene.Neuron 1: 183–188.CrossRefPubMedGoogle Scholar
  72. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., and Goodman, R. H. (1986). Identification of a cyclic-AMP-responsive element within the rat somatostatin gene.Proc. Natl. Acad. Sci. USA 83:6682–6686.PubMedGoogle Scholar
  73. Moore, R. Y. (1973). Retinohypothalamic projection in mammals: a comparative study.Brain Res. 49:403–409.CrossRefPubMedGoogle Scholar
  74. Moore, R. Y. (1983). Organization and function of a central nervous system circadian oscillator: The suprachiasmatic hypothalamic nucleus.Fed. Proc. 42:2783–2789.PubMedGoogle Scholar
  75. Moratalla, R., Vickers, E. A., Robertson, H. A., Cochran, B. H., and Graybiel, A. M. (1993). Coordinate expression of c-fos andjun B is induced in the rat striatum by cocaine.J. Neurosci. 13:423–433.PubMedGoogle Scholar
  76. Morgan, J. I., and Curran, T. (1989). Stimulus-transcription coupling in neurons: Role of cellular immediate-early genes.Trends Neurosci. 12:459–462.CrossRefPubMedGoogle Scholar
  77. Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenesfos andjun.Annu. Rev. Neurosci. 14:421–451.CrossRefPubMedGoogle Scholar
  78. Morgan, J. I., Cohen, D. R., Hempstead, J. L., and Curran, T. (1987). Mapping patterns of c-fos expression in the central nervous system after seizure.Science 237:192–197.PubMedGoogle Scholar
  79. Müller, R., Bravo, R., Burckhardt, J., and Curran, T. (1984). Induction of c-fos gene and protein by growth factors precedes activation ofc-myc.Nature 312:716–720.CrossRefPubMedGoogle Scholar
  80. Naranjo, J. R., Mellstrom, B., Achaval, M., Lucas, J. J., Del Rio, J., and Sassone-Corsi, P. (1991). Co-induction ofjun B and c-fos in a subset of neurons in the spinal cord.Oncogene 6:223–227.PubMedGoogle Scholar
  81. Nelson, D. E., and Takahashi, J. S. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus).J. Physiol. (Lond.) 439:115–145.Google Scholar
  82. Park, H. T., Baek, S. Y., Kim, B. S., Kim, J. B., and Kim, J. J. (1993). Profile of Fos-like immunoreactivity induction by light stimuli in the intergeniculate leaflet is different from that of the suprachiasmatic nucleus.Brain Res. 610: 334–339.CrossRefPubMedGoogle Scholar
  83. Pittendrigh, C. S., and Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock.J. Comp. Physiol. 106:291–331.Google Scholar
  84. Raju, U., Koumenis, C., Nunez-Regueiro, M., and Eskin, A. (1991). Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor.Science 253:673–675.PubMedGoogle Scholar
  85. Ralph, M. R., and Menaker, M. (1988). A mutation of the circadian system in golden hamsters.Science 241:1225–1227.PubMedGoogle Scholar
  86. Rauscher, F. J., III, Sambucetti, L. C., Curren, T., Distel, R. J., and Spiegelman, B. M. (1988). A common DNA binding site for Fos protein complexes and transcription factor AP-1.Cell 52:471–480.PubMedGoogle Scholar
  87. Rea, M. A. (1989). Light increases fos-related protein immunoreactivity in the rat suprachiasmatic nuclei.Brain Res. Bull 23:577–581.CrossRefPubMedGoogle Scholar
  88. Rea, M. A., Buckley, B., and Lutton, L. M. (1993). Local administration of EAA antagonists blocks light-induced phase shifts and c-fos expression in hamster SCN.Am. J. Physiol. 265:R1191-R1198.PubMedGoogle Scholar
  89. Robertson, L. M., Smeyne, R. J., Luk, D., Morgan, J. I., and Curran, T. (1991). Diurnal and photic regulation of c-fos expression in transgenic mice.Soc. Neurosci. Abstr. 17: 668.Google Scholar
  90. Rosbash, M., and Hall, J. C. (1989). The molecular biology of circadian rhythms.Neuron 3:387–398.CrossRefPubMedGoogle Scholar
  91. Rusak, B., Robertson, H. A., Wisden, W., and Hunt, S.P. (1990). Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus.Science 248: 1237–1240.PubMedGoogle Scholar
  92. Rusak, B., McNaughton, L., Robertson, H. A., and Hunt, S. P. (1992). Circadian variation in photic regulation of immediate-early gene mRNAs in rat suprachiasmatic nucleus cells.Mol. Brain Res 14:124–130.CrossRefPubMedGoogle Scholar
  93. Ryseck, R.-P., and Bravo, R. (1991). c-Jun, Jun B, and Jun D differ in their binding affinities to AP-1 and CRE consensus sequences: Effect of Fos proteins.Oncogene 6: 533–542.PubMedGoogle Scholar
  94. Saffen, D. W., Cole, A. J., Worley, P. F., Christy, B. A., Ryder, K., and Baraban, J. M. (1988). Convulsant-induced increase in transcription factor messenger RNAs in rat brain.Proc. Natl. Acad. Sci. USA 85:7795–7799.PubMedGoogle Scholar
  95. Sagar, S. M., and Sharp, F. R. (1990). Light induces a Fos-like nuclear antigen in retinal neurons.Mol. Brain Res 7: 17–21.CrossRefPubMedGoogle Scholar
  96. Sagar, S. M., Sharp, F. R., and Curran, T. (1988). Expression of c-fos protein in brain: Metabolic mapping at the cellular level.Science 240:1328–1331.PubMedGoogle Scholar
  97. Sassone-Corsi, P., Lamph, W. W., and Verma, I. M. (1988). Regulation of protooncogenefos: A paradigm for early response genes.Cold Spring Harbor Symp. Quant. Biol. 53:749–760.PubMedGoogle Scholar
  98. Schutte, J., Viallet, J., Nau, M., Segal, S., Fedorko, J., and Minna, J. (1989).jun-B inhibits and c-fos stimulates the transforming andtrans-activating activities ofc-jun.Cell 59:987–997.CrossRefPubMedGoogle Scholar
  99. Sheng, M., and Greenberg, M. E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system.Neuron 4:477–485.PubMedGoogle Scholar
  100. Sheng, M., Dougan, S. T., McFadden, G., and Greenberg, M. E. (1988). Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences.Mol. Cell. Biol. 8:2787–2796.PubMedGoogle Scholar
  101. Sheng, M., and McFadden, G., and Greenberg, M. E. (1990). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB.Neuron 4:571–582.PubMedGoogle Scholar
  102. Shibata, S., Liou, S. Y., and Ueki, S. (1986). Influence of excitatory amino acid receptor antagonists and of baclofen on synaptic transmission in the optic nerve to the suprachiasmatic nucleus in slices of rat hypothalalmus.Neuropharmacology 28:403–409.Google Scholar
  103. Shinohara, K., Tominaga, K., Isobe, Y., and Inouye, S.-I. T. (1993). Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic, nucleus of the rat: Daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y.J. Neurosci. 13:793–800.PubMedGoogle Scholar
  104. Smeyne, R. J., Schilling, K., Robertson, L., Luk, D., Oberdick, J., Curran, T., and Morgan, J. I. (1992). Fos-lacZ transgenic mice: Mapping sites of gene induction in the central nervous system.Neuron 8:13–23.CrossRefPubMedGoogle Scholar
  105. Sonnenberg, J. L., Macgregor-Leon, P. F., Curran, T., and Morgan, J. I. (1989a). Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure.Neuron 3:359–365.CrossRefPubMedGoogle Scholar
  106. Sonnenberg, J. L., Mitchelmore, C., Macgregor-Leon, P. F., Hempstead, J., Morgan, J. I., and Curran, T. (1989b). Glutamate receptor agonists increase the expression of Fos, Fra and AP-1 DNA binding activity in the mammalian brain.J. Neurosci. Res. 24:72–80.CrossRefPubMedGoogle Scholar
  107. Sonnenberg, J. L., Rauscher, F. J., III, Morgan, J. I., and Curran, T. (1989c). Regulation of proenkephalin by proto-oncogenesfos andjun.Science 246:1622–1625.PubMedGoogle Scholar
  108. Sutin, E. L., and Kilduff, T. S. (1992). Circadian and light-induced expression of immediate early gene mRNAs in the rat suprachiasmatic nucleus.Mol. Brain Res 15:281–290.CrossRefPubMedGoogle Scholar
  109. Takahashi, J. S. (1991). Circadian rhythms: from gene expression to behavior.Curr. Opin. Neurobiol 1:556–561.CrossRefPubMedGoogle Scholar
  110. Takahashi, J. S. (1992). Circadian clock genes are ticking.Science 258:238–240.PubMedGoogle Scholar
  111. Takahashi, J. S., and Turek, F. W. (1987) Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker.Brain Res. 405:199–203.CrossRefPubMedGoogle Scholar
  112. Takahashi, J. S., and Zatz, M. (1982). Regulation of circadian rhythmicity.Science 217:1104–1111.PubMedGoogle Scholar
  113. Takahashi, J. S., DeCoursey, P. J., Bauman, L., and Menaker, M. (1984). Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms.Nature 308:186–188.CrossRefPubMedGoogle Scholar
  114. Takeuchi, J., Shannon, W., Aronin, N., and Schwartz, W. J. (1993). Compositional changes of AP-1 DNA-binding proteins are regulated by light in a mammalian circadian clock.Neuron 11:825–836.CrossRefPubMedGoogle Scholar
  115. Travis, G. H., Milner, R. J., and Sutcliffe, J. G. (1990). Preparation and use of substractive cDNA hybridization probes for cDNA cloning. In Boulton, A. A., Baker, G. B., and Campagnoni, A. T. (eds.),Neuromethods: Molecular Neurobiological Techniques, Humana Press, Clifton, NJ, pp. 49–78.Google Scholar
  116. Treisman, R. (1985). Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences.Cell 42:889–902.CrossRefPubMedGoogle Scholar
  117. Uhl, G. R., Walther, D., Nishimori, R., Buzzi, M. G., and Moskowitz, M. A. (1991).Jun B, c-jun, jun D and c-fos mRNAs in nucleus caudalis neurons: Rapid selective enhancement by afferent stimulation.Mol. Brain Res. 11: 133–141.CrossRefPubMedGoogle Scholar
  118. van den Pol, A. N., and Tsujimoto, K. L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunocytochemical analysis of 25 neuronal antigens.Neuroscience 15:1049–1086.PubMedGoogle Scholar
  119. Vitaterna, M. H., King, D. P., Chang, A.-M., Kornhauser, J. M., Lowrey, P. L., MacDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., and Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene,Clock, essential for circadian behavior.Science 264:719–725.PubMedGoogle Scholar
  120. Wisden, W., Errington, M. L., Williams, S., Dunnett, S. B., Waters, C., Hitchcock, D., Evan, G., Bliss, T. V. P., and Hunt, S. P. (1990). Differential expression of immediate early genes in the hippocampus and spinal cord.Neuron 4:603–614.CrossRefPubMedGoogle Scholar
  121. Wollnik, F., Turek, F. W., Majewski, P., and Takahashi, J. S. (1989). Phase shifting the circadian clock with cycloheximide: Response of hamsters with an, intact or a split rhythm of locomotor activity.Brain Res. 496:82–88.CrossRefPubMedGoogle Scholar
  122. Yoshida, K., Kawamura, K., and Imaki, J. (1993). Differential expression of c-fos mRNA in rat retinal cells: Regulation by light/dark cycle.Neuron 10:1049–1054.CrossRefPubMedGoogle Scholar
  123. Young, M. W. (ed.) (1993).Molecular Genetics of Biological Rhythms. Marcel Dekker, New York.Google Scholar
  124. Zatz, M., and Herkenham, M. A. (1981). Intraventricular carbachol mimics the phase shifting effects of light on the circadian rhythm of wheel-running activity.Brain Res. 212:234–238.CrossRefPubMedGoogle Scholar
  125. Zhang, Y., Kornhauser, J. M., Zee, P. C., Mayo, K. E., Takahashi, J. S., and Turek, F. W. (1996). Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, Fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus.Neuroscience 70: 951–961.CrossRefPubMedGoogle Scholar
  126. Zhang, Y., Van Reeth, O., Zee, P. C., Takahashi, J. S., and Turek, F. W. (1993b). Fos protein expression in the circadian clock is not associated with phase shifts induced by a nonphotic stimulus, triazolam.Neurosci. Lett. 164: 203–208.CrossRefPubMedGoogle Scholar
  127. Zhang, Y., Zee, P. C., Kirby, J. D., Takahashi, J. S., and Turek, F. W. (1993c). A cholinergic antagonist, mecamylamine, blocks light-induced Fos immunoreactivity in specific regions of the hamster suprachiasmatic nucleus.Brain Res. 615:107–112.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Jon M. Kornhauser
    • 1
    • 2
  • Kelly E. Mayo
    • 2
  • Joseph S. Takahashi
    • 1
    • 3
  1. 1.NSF Center for Biological TimingNorthwestern UniversityEvanston
  2. 2.Department of Biochemistry, Molecular Biology, and Cell BiologyNorthwestern UniversityEvanston
  3. 3.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanston

Personalised recommendations