Journal of Mathematical Sciences

, Volume 87, Issue 5, pp 3781–3787 | Cite as

On the existence of nontangential boundary values of pseudocontinuable functions

  • A. B. Aleksandrov


Let θ be an inner function, let θ*(H2)=H2⊖θH2, and let μ be a finite Borel measure on the unit circle\(\mathbb{T}\). Our main purpose is to prove that, if every functionf∈θ*(H2) can be defined μ-almost everywhere on\(\mathbb{T}\) in a certain (weak) natural sense, then every functionf∈θ*(H2) has finite angular boundary values μ-almost everywhere on\(\mathbb{T}\). A similar result is true for the Lp-analog of θ*(H2) (p>0). Bibliography: 17 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Garnett,Bounded Analytic Functions, Academic Press (1981).Google Scholar
  2. 2.
    N. K. Nikol'skii,Lectures on the Shift Operator [in Russian], Moscow (1980).Google Scholar
  3. 3.
    A. B. Aleksandrov, “Invariant subspaces of the shift operator. Axiomatic approach,”Zap. Nauchn. Semin. LOMI,113, 7–26 (1981).MATHGoogle Scholar
  4. 4.
    A. B. Aleksandrov, “Invariant subspaces of the inverse shift operator on the spaceH p(p ∈ (0, 1)),”Zap. Nauchn. Semin. LOMI,92, 7–29 (1979).MATHGoogle Scholar
  5. 5.
    A. L. Vol'berg and S. R. Treil', “Embedding theorems for invariant subspaces of the inverse shift operator,”Zap. Nauchn. Semin. LOMI,149, 38–51 (1986).Google Scholar
  6. 6.
    W. Cohn, “Radial limits and star invariant subspaces,”Am. J. Math.,108, 719–749 (1986).MATHGoogle Scholar
  7. 7.
    P. R. Ahern and D. N. Clark, “Radial limits and invariant subspaces,”Am. J. Math.,92, 332–342 (1970).MathSciNetGoogle Scholar
  8. 8.
    D. Clark, “One dimensional perturbations of restricted shifts,”J. Anal. Math.,25, 169–191 (1972).MATHGoogle Scholar
  9. 9.
    A. G. Poltoratskii, “Boundary behavior of pseudocontinuable functions,”Algebra Analiz,5, 189–210 (1993).MATHMathSciNetGoogle Scholar
  10. 10.
    E. M. Nikishin. “Resonance theorems and expansions in eigenfunctions of the Laplace operator,”Izv. Akad. Nauk SSSR,36, 795–813 (1972).MATHGoogle Scholar
  11. 11.
    B. Maurey, “Thèorèmes des factorization pour les opérateurs linéaires à valeurs dans les espacesL p,”Astérisque, No.11 (1974).Google Scholar
  12. 12.
    A. B. Aleksandrov, “On theA-integrability of boundary values for harmonic functions,”Mat. Zam.,30, 59–72 (1981).MATHGoogle Scholar
  13. 13.
    M. G. Goluzina, “On multiplication and division for Cauchy type integrals,”Vestnik LGU, Ser. 1, No. 19, 8–15 (1981).MATHMathSciNetGoogle Scholar
  14. 14.
    S. V. Khrushchev and S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series,”Lect. Notes Math.,864, 171–213 (1981).Google Scholar
  15. 15.
    A. B. Aleksandrov, “Inner functions and the related spaces of pseudocontinuable functions,”Mat. Zam.,170, 7–33 (1989).MATHGoogle Scholar
  16. 16.
    W. Rudin, Function Theory in the Unit Ball of ℂn, Springer-Verlag (1984).Google Scholar
  17. 17.
    E. Bishop, “A general Rudin-Carleson Theorem,”Proc. Am. Math. Soc.,13, 140–143 (1962).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. B. Aleksandrov

There are no affiliations available

Personalised recommendations