Advertisement

Mathematical Notes

, Volume 61, Issue 2, pp 227–241 | Cite as

Saddle-point method and resurgent analysis

  • B. Yu. Sternin
  • V. E. Shatalov
Article
  • 78 Downloads

Abstract

The topological part of the theory of the parameter-dependent Laplace integral is known to consist of two stages. At the first stage, the integration contour is reduced to a sum of paths of steepest descent for some value of the parameter. At the second stage, this decomposition (and hence the asymptotic expansion of the integral) is continued to all other parameter values. In the present paper, the second stage is studied with the help of resurgent analysis techniques.

Key words

resurgent functions saddle-point method resurgent equations alient derivatives Stokes lines bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Écalle,Les fonctions résurgentes. I, II, III, Publ. Mathématiques d'Orsay, Paris (1981–1985).Google Scholar
  2. 2.
    B. Candelpergher, J. C. Nosmas, and F. Pham,Approche de la résurgence, Hermann éditeurs des sciences et des arts, Paris (1993).Google Scholar
  3. 3.
    B. Sternin and V. Shatalov, “On a notion of resurgent function of several variables,”Math. Nachr.,171, 283–301 (1995).MathSciNetGoogle Scholar
  4. 4.
    B. Sternin and V. Shatalov,Borel-Laplace Transform and Asymptotic Theory, CRC Press, Florida (1995).Google Scholar
  5. 5.
    M. V. Berry and C. J. Howls, “Hyperasymptotics for integrals with saddles,”Proc. Roy. Soc. London. Ser. A.,443, 657–675 (1991).MathSciNetGoogle Scholar
  6. 6.
    B. Malgrange, “Méthode de la phase stationnaire et sommation de Borel,” in:Complex Analysis. Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Phys, Vol. 126, Springer Verlag, Berlin-Heidelberg (1980).Google Scholar
  7. 7.
    F. Pham, “Vanishing homologies and then variable saddlepoint method,” in:Proc. Sympos. Pure Math, Vol. 40, Part 2, AMS, Providence (1983), pp. 319–333.Google Scholar
  8. 8.
    B. Sternin and V. Shatalov,Saddle Point Method and Resurgent Analysis, Preprint No. 95-69, Max-Planck-Institut für Mathematik, Bonn (1995).Google Scholar
  9. 9.
    B. Sternin and V. Shatalov,Differential Equations on Complex Manifolds, Kluwer Acad. Publ., Dordrecht (1994).Google Scholar
  10. 10.
    M. V. Fedoryuk,The Saddle-Point Method [in Russian], [Russian translation], Nauka, Moscow (1977).Google Scholar
  11. 11.
    J. C. Tougeron,An Introduction to the Theory of Gevrey Expansions and to Borel-Laplace Transform, with Some Applications, Preprint, Univ. of Toronto, Canada (1990).Google Scholar
  12. 12.
    S. Lefschetz,L'analysis situs et la géométrie algébrique, Gauthier-Villars, Paris (1924).Google Scholar
  13. 13.
    E. Delabaere, “Introduction to the Écalle theory,” in:Computer Algebra and Differential Equations London Math. Soc. Lecture Note Ser, Vol. 193 (E. Tournier, editor), Univ. Press, Cambridge (1994), pp. 59–102.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 2
  1. 1.M. V. LomonosovMoscow State UniversityUSSR
  2. 2.Institute for Applied MathematicsRussian Academy of SciencesUSSR

Personalised recommendations