Neuroscience and Behavioral Physiology

, Volume 24, Issue 1, pp 47–57

Structural organization of the sensory systems of the snail

  • O. V. Zaitseva
Sensory Systems of the Snail

Abstract

The author's data on the structural organization of the nervous system of the body wall, the gravitational organs (the statocysts, the eyes, and the chemosensory organs), and the head tentacles of the snailsHelix vulgaris andHelix pomatia are correlated in this paper. The localization in the CNS and some structural characteristics of the central divisions of the sensory systems are shown. Information is presented on the structure of the procerebrum, an associative center participating in the processing of chemosensory information. The data were obtained using the Golgi method, the retro- and anterograde transport of CoCl2, horseradish peroxidase, and lucifer yellow, as well as a number of other classical histological methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Zaitseva “The innervation of the cutaneous integument of the pulmonate molluscs”,Arkh. Anat., Gistol. Émbriol.,78, No. 5, 32–39 (1980).Google Scholar
  2. 2.
    O. V. Zaitseva, “Sensory elements of the central nervous system ofLymnaea stagnalis (the pleurovisceral arc of ganglia)”,Zh. Évol. Biokhim. Fiziol.,18, No. 5, 482–490 (1982).Google Scholar
  3. 3.
    O. V. Zaitseva, “The chemosensory system of the common snail”,Tsitologiya,28, No. 10, 1133 (1986).Google Scholar
  4. 4.
    O. V. Zaitseva, “Contemporary morphological methods of the investigation of the structural-functional organization of the nervous system”,Arkh. Anat., Gistol. Émbriol.,91, No. 11, 102–112 (1986).Google Scholar
  5. 5.
    O. V. Zaitseva, “Elements of the central divisions of the tentacular and osphradial sensory systems of the common pond snail,”Sensor. Sist.,1, No. 2, 154–165 (1987).Google Scholar
  6. 6.
    O. V. Zaitseva, “Glomeruli of the tentacular nervous system of the common snail,”Sensor. Sist.,3, No. 3, 238–249 (1989).Google Scholar
  7. 7.
    O. V. Zaitseva, “Structural organization of the sensory system of the statocysts of the common snail,”Zh. Évol. Biokhim. Fiziol.,26, No. 1, 105–11 (1990).Google Scholar
  8. 8.
    O. V. Zaitseva, L. S. Bocharova, and A. G. Pogorelov, “The cellular organization and ultrastructure of the statocyst ofViviparus viviparus,”Tsitologiya,22, No. 5, 526–533 (1980).Google Scholar
  9. 9.
    O. V. Zaitseva, V. D. Zharskaya, and V. A. Kovalev, “A modification of the peroxidase method for the identification of the structural organization of the central and peripheral elements of the nervous system of molluscs,”Tsitologiya,23, No. 10, 1122–1125 (1981).Google Scholar
  10. 10.
    O. V. Zaitseva, V. A. Kovalev, and L. S. Bocharova, “An investigation of the morphofunctional interactions of the sensory epithelium and statoconia in the statocyst of the molluscLymnaea stagnalis,”Zh. Évol. Biokhim. Fiziol.,14, No. 3, 307–309 (1978).PubMedGoogle Scholar
  11. 11.
    O. V. Zaitseva, V. A. Kovalev, and V. A. Sokolov, “An investigation of the cerebral division of the visual sensory system of the pulmonate molluscs,”Neirofiziologiya,14, No. 2, 179–184 (1982).Google Scholar
  12. 12.
    O. V. Zaitseva and N. E. Shuvalova, “The morphology of RPD1 neuron ofLymnaea stagnalis and its participation in the processing of sensory information,”Neirofiziologiya,20, No. 6, 785–793 (1988).Google Scholar
  13. 13.
    O. V. Zaitseva and N. E. Shuvalova, “The metacerebri and the central portion of the parietal ganglion as centers of integration of multimodal sensory information in gastropods,” in:Summaries of 10th All-Union Conference on Evolutionary Physiology [in Russian], Nauka, Leningrad (1990), pp. 65–66.Google Scholar
  14. 14.
    V. A. Kovalev, “An investigation of efferent influences on the activity of the equilibratory organ of the snail,” in:The Mechanisms of the Activity of the Central and Peripheral Nervous System. The Nervous System [in Russian], Leningrad (1988), pp. 63–69.Google Scholar
  15. 15.
    V. A. Kovalev, O. V. Zaitseva, and V. A. Sokolov, “The morphological and functional characterization of the statocysts of the pulmonate molluscs,”Zh. Évol. Biokhim. Fiziol.,17, No. 1, 18–24 (1981).Google Scholar
  16. 16.
    V. A. Kovalev, O. V. Zaitseva, and V. A. Sokolov, “An investigation of the cerebral division of the sensory system of the statocysts of the pulmonate molluscs,”Zh. Évol. Biokhim. Fiziol.,18, No. 4, 355–360 (1982).Google Scholar
  17. 17.
    O. A. Maksimova and P. M. Balaban,The Neuronal Mechanisms of the Plasticity of Behavior [in Russian], Nauka, Moscow (1983).Google Scholar
  18. 18.
    A. V. Ovchinnikov, “The interaction of hair cells in the statocyst of the snail,”Neirofiziologiya,17, No. 2, 230–239 (1985).Google Scholar
  19. 19.
    A. V. Ovchinnikov, “The morphological features of the chemosensory, visual and vestibular pathways of the snail,”Neirofiziologiya,18, No. 1, 7–16 (1986).Google Scholar
  20. 20.
    V. A. Sokolov, N. N. Kamardin, O. V. Zaitseva, and T. P. Tsirulis, “The osphradial sensory system of the gastropod molluscs,” in:Sensory Systems [in Russian], Nauka, Leningrad (1980), pp. 159–176.Google Scholar
  21. 21.
    V. A. Sokolov and V. A. Kovalev, “The sensory system of the statocysts of the gastropod molluscs,” in:Sensory Systems [in Russian], Nauka, Leningrad (1979), pp. 136–148.Google Scholar
  22. 22.
    H. P. K. Agersborg, “Some observations on qualitative chemical and physical stimulation in nudibranchiate mollusks with special reference to the role of the ‘rhinophores’,”J. Expt. Zool.,36, 423–445 (1922).Google Scholar
  23. 23.
    T. Akaike and D. Alkon, “Sensory convergence on central visual neurons inHermissenda,”J. Neurophysiol.,44, No. 3, 501–513 (1980).PubMedGoogle Scholar
  24. 24.
    D. L. Alkon, “Sensory interactions in nudibranch molluskHermissenda crassicornis,”Feder. Proc.,33, No. 6, 1090 (1974).Google Scholar
  25. 25.
    D. L. Alkon, T. Akaike, and J. Harrigan, “Interaction of chemosensory, visual and statocyst pathways inHermissenda crassicornis,”J. Gen. Physiol.,71, No. 1, 177–194 (1978).PubMedGoogle Scholar
  26. 26.
    C. H. Bailey, V. F. Castelucci, J. Koester, and E. R. Kandel, “Cellular studies of peripheral neurons in siphon skin ofAplysia californica,”J. Neurophysiol.,42, 530–557 (1979).PubMedGoogle Scholar
  27. 27.
    E. M. Barber and M. F. Land, “The fine structure of the eye of the molluscPecten maximus,”Z. Zellforsch. Mikrosk. Anat.,76, 295–312 (1967).CrossRefGoogle Scholar
  28. 28.
    C. M. Beiswanger, P. G. Sokolov, and D. J. Prior, “Extraocular photoentrainment of the circadian locomotor rhythm of the garden slugLimax,”J. Exptl Zool.,216, No. 1, 13–23 (1981).Google Scholar
  29. 29.
    J. L. Brandenburger, “Two new kinds of retinal cells in the eye of a snailHelix aspersa,”J. Ultrastructura Res. 50, No. 2, 216–230 (1975).Google Scholar
  30. 30.
    T. H. Bullock and G. A. Horridge,Structure and Function in the Nervous Systems of Invertebrates, Vol. 2, Freeman and Co., San-Francisco-London (1965).Google Scholar
  31. 31.
    J. Cadart,Les Escargots (Helix pomatia et H. aspersa), Paris (1955).Google Scholar
  32. 32.
    R. Chase, “Electrical responses of the epithelium with wind and odors,”J. Comp. Biochem. Physiol.,70A, No. 1, 149–155 (1981).Google Scholar
  33. 33.
    R. Chase, “Responses to odors mapped in snail tentacles and brain by C14-2-deoxyglucose autoradiography,”J. Neurosci.,5, 2930–2939 (1985).PubMedGoogle Scholar
  34. 34.
    R. Chase, “Lessons from snail tentacles,”Chemical Senses,11, 411–426 (1986).Google Scholar
  35. 35.
    R. Chase and R. P. Croll, “Tentacular function in snail olfactory orientation,”J. Comp. Physiol.,143A, 357–362 (1981).Google Scholar
  36. 36.
    R. Chase and J. Reiling, “Autoradiographic evidence for receptor cell renewal in the olfactory epithelium of a snail,”Brain Res.,384, 232–239 (1986).CrossRefPubMedGoogle Scholar
  37. 37.
    R. Chase and B. Tolloczko, “Synaptic glomeruli in the olfactory system of a snail,”Cell Tissue Res.,246, 567–573 (1986).CrossRefGoogle Scholar
  38. 38.
    R. Chase and B. Tolloczko, “Interganglionic dendrites constitute an output pathway from the procerebrum of the snailAchatina fulica,”J. Comp. Neurol.,283, 143–152, (1989).CrossRefPubMedGoogle Scholar
  39. 39.
    G. Chelazzi and M. Vannini, “Zonal orientation based on local visual cues inNerita plicata L.,”J. Expt. Mar. Biol. Ecol.,46, No. 2-3, 147–156 (1980).Google Scholar
  40. 40.
    C. Christopher and S. Moffett, “Cerebral motoneurons mediating tentacle retraction in the land slugAriolimax columlianus [sic],”J. Neurobiol.,13, No. 2, 163–172 (1982).Google Scholar
  41. 41.
    J. Demall, “Essai d'histologie comparée des organes chémorecepteurs des gastéropodes,”Mémoires Acad. Belg. Sci.,29, 1–83 (1955).Google Scholar
  42. 42.
    S. R. Farkas and H. H. Shorey, “Anemotaxis and odor-trail following by the snailHelix aspersa,”Anim. Behav.,24, 686–689 (1976).Google Scholar
  43. 43.
    P. V. Hamilton and B. J. Russell, “Field experiments of the sense organs and directional cells in involved in offshoreoriented swimming byAplysia brasiliana Rany,”J. Expt. Mar. Biol. Ecol.,56, No. 2-3, 123–143 (1982).Google Scholar
  44. 44.
    L. Hernadi, “Light and electron microscopic investigation of the sensory cell bodies in the epidermis of the foot of the snailHelix pomatia,”Acta Biol. Sci. Hung.,32, No. 1, 19–32 (1981).Google Scholar
  45. 45.
    H. P. L. Hughes, “A light and electron microscope study of some opisthobranch eyes,”Z. Zellforsch. Mikrosk. Anat.,106, 79–86 (1970).CrossRefPubMedGoogle Scholar
  46. 46.
    B. Jahan-Parwar and S. M. Fredman, “Chemoreception inAplysia,” in:Neurobiology of Invertebrates. Gastropoda Brain, Tihany (1975), pp. 511–524.Google Scholar
  47. 47.
    C. A. Janse, “Neurophysiological study of the peripheral tactile system of the pond snailLymnaea stagnalis,”Neth. J. Zool.,24, 93–161 (1974).Google Scholar
  48. 48.
    W. Kiechebush, “Beitrag zur Physiologie des chemischen sinnes vonHelix pomatia,”Zool. Jahrbücher (Psychologie),64, No. 2, 153–182 (1953).Google Scholar
  49. 49.
    A. J. Kohn, “Chemoreception in gastropoda molluscs,”Amer. Zool.,1, 291–308 (1961).Google Scholar
  50. 50.
    J. G. Nichols and D. A. Baylor, “Specific modalities and receptive fields of sensory neurons in CNS of the leech,”J. Neurophysiol.,31, 740–756 (1968).Google Scholar
  51. 51.
    E. W. Roubos, “Regulation of neurosecretory activity in the freshwater pulmonateLymnaea stagnalis with particular reference to the role of the eyes,”Cell. Tissue Res.,160, 291–314 (1975).CrossRefPubMedGoogle Scholar
  52. 52.
    E. W. Roubos, H. H. Boer, J. Wlidenes, and C. M. Moorer van Delft, “Regulatory input to neurosecretory cells of the fresh-water pulmonate snailLymnaea stagnalis,” in:Neurobiology of Invertebrates. Gastropoda Brain, Tihany (1975), pp. 101–109.Google Scholar
  53. 53.
    J. Salánki and B. Jahan-Parwar, “Activation of cerebral neurons by static nerve inputs inAplysia californica,”J. Comp. Biochem. Physiol.,80A, 539–545 (1985).Google Scholar
  54. 54.
    J. Salánki and Truong van Bay, “Sensory input characteristics at the chemical stimulation of the lip in theHelix pomatia L.,”Ann. Biol. tihany,42, 115–128 (1975).Google Scholar
  55. 55.
    L. W. Schut, “Recherches sur les fonctionnes sensorielles chez l'escargot terrestreHelix aspersa,”Arch. Neerl. Physiol.,4, 9–30 (1920).Google Scholar
  56. 56.
    C. J. Stoll, “Extraocular photoreception inLymnaea stagnalis L.,” in:Neurobiology of Invertebrates. Gastropoda Brain, Tihany (1976), pp. 487–495.Google Scholar
  57. 57.
    C. J. Stoll, “Peripheral and central photoreception inAplysia fusciata,”Malacologia,18, No. 1-2, 459–463 (1979).PubMedGoogle Scholar
  58. 58.
    U. Welsch and V. Storch, “Über das Osphradium der Prosobranchia SchneckenBuccinum undatum L. undNeptunea antigua L.,”Z. Zellforsch.,95, 317–330 (1969).CrossRefPubMedGoogle Scholar
  59. 59.
    H. G. Wolff, “Einige Ergebnisse zur Ultrastruktur der Statocysten vonLimax maximus, Limax flavus undArion empiricum,”Z. Zellforsch.,100, 251–270 (1969).CrossRefPubMedGoogle Scholar
  60. 60.
    H. G. Wolff, “Statocystenfunktion bei einigen Landpulmonaten (Gastropoda),”Z. Vergl. Physiol.,65, 326–366 (1970).Google Scholar
  61. 61.
    H. G. Wolff, “Statische Orientierung bei Mollusken,”Forsch. Zool.,21, 80–99 (1973).Google Scholar
  62. 62.
    H. Wolter, “Beiträge zur Biologie, Histologie und Sinnesphysiologie (insbesondere der Chemoreception) einiger Nudibranchier der Nordsee,”Z. Morph. Ökol. Tiere,60, 275–337 (1967).CrossRefGoogle Scholar
  63. 63.
    G. Wondrack, “The ultrastructure of the sensory cells in the chemoreceptor of the ommatophore of [sic] inHelix pomatia L.,”Cell Tissue Res.,159, 121–140 (1975).Google Scholar
  64. 64.
    O. V. Zaitseva, “Structural organization of the tentacular sensory system in land pulmonate,” in:Studies in Neuroscience. Simpler Nervous Systems, Manchester University Press (1991), pp. 238–258.Google Scholar
  65. 65.
    O. V. Zaitseva and L. S. Bocharova, “Sensory cells in the head skin of pond snails. Fine structure of sensory endings,”Cells Tissue Res.,220, 797–807 (1981).Google Scholar
  66. 66.
    J. Zs-Nagy and D. A. Sakharov, “The fine structure of the procerebrum of pulmonate molluscs,”Helix andLimax,”Tissue and Cell.,2, 398–411 (1970).Google Scholar
  67. 67.
    U. Zylstra, “Distribution and ultrastructure of epidermal sensory cells in the freshwater snailLymnaea stagnalis andBiompholaria pfeifferi,”J. Zool.,22, 283–298 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • O. V. Zaitseva
    • 1
  1. 1.A. A. Ukhtomskii Physiological Institute, Saint-Petersburg State UniversitySaint-PetersburgUSSR

Personalised recommendations