Group sequential extensions of a standard bioequivalence testing procedure

Abstract

Bioequivalence trials compare the relative bioavailability of different formulations of a drug. Regulatory requirements for demonstrating average bioequivalence of two formulations generally include showing that a (say) 90% confidence interval for the ratio of expected pharmacologic end point values of the formulations lies between specified end points, e.g., 0.8–1.25. The likelihood of demonstrating bioequivalence when the formulations truly are equivalent depends on the sample size and on the variability of the pharmacologic end point. Group sequential bioequivalence testing provides a statistically valid way to accommodate misspecification of the variability in designing the trial by allowing for additional observations if a clear decision to accept or reject bioequivalence cannot be reached with the initial set of observations. This paper describes group sequential bioequivalence designs applicable in most practical situations that allow a decision to be reached with fewer observations than fixed-sample designs about 60% of the time at approximately the same average cost. The designs can be used in trials where the formulations are expected to have equal bioavailability and in trials where the formulations are expected to differ slightly. Data analyses are carried out exactly as for fixed-sample designs. Providing the capability of sequential decisions modestly affects the nominal significance levels, e.g., the required confidence level may be 93–94% instead of 90%.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Durrleman and R. Simon. Planning and monitoring of equivalence trials.Biometrics 46:329–336 (1990).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    D. J. Schuirmann. On hypothesis testing to determine if the mean of a normal distribution is contained in a known interval.Biometrics 37:617 (1981).

    Google Scholar 

  3. 3.

    D. J. Schuirmann. A comparison of the two one-sided test procedure and the power approach for assessing the equivalence of average bioavailability.J. Pharmacokin. Biopharm. 15:657–680 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    W. J. Westlake. Use of confidence intervals in analyses of comparative bioavailability trials.J. Pharm. Sci. 61:1340–1341 (1972).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    W. J. Westlake. Symmetrical confidence intervals for bioequivalence trials.Biometrics 32:741–744 (1976).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    W. J. Westlake. Statistical aspects of comparative bioavailability trials.Biometrics 35:273–280 (1979).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    D. Mandallaz and J. Mau. Comparison of different methods for decision-making in bioequivalence assessment.Biometrics 37:213–222 (1981).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    A. Racine-Poon, A. Grieve, H. Fluehler, and A. F. M. Smith. A two-stage procedure for bioequivalence studies.Biometrics 43:847–856 (1987).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    B. E. Rodda and R. L. Davis. Determining the probability of an important difference in bioavailability.Clin. Pharmacol. Ther. 28:247–252 (1980).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    R. Srinivasan and P. Langenberg. A two-stage procedure with controlled error probabilities for testing bioequivalence.Biomet. J. 28:825–833 (1986).

    Article  Google Scholar 

  11. 11.

    C. Jennison and B. W. Turnbull. Sequential equivalence testing and repeated confidence intervals, with applications to normal and binary responses.Biometrics 49:31–43 (1993).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    D. M. Rocke. On testing for bioequivalence.Biometrics 40:225–230 (1984).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    S. Chow and J. P. Liu.Design and Analysis of Bioavailability and Bioequivalence Studies, Marcel Dekker, New York, 1992.

    Google Scholar 

  14. 14.

    M. Hills and P. Armitage. The two period cross-over clinical trial.Br. J. Clin. Pharmacol. 8:7–20 (1979).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    B. Jones and M. G. Kenward.Design and Analysis of Cross-Over Trials, Chapman and Hall, London, 1989.

    Google Scholar 

  16. 16.

    D. J. Schuirmann. Design of bioavailability/bioequivalence studies.Drug Inform. J. 24:315–323 (1990).

    Google Scholar 

  17. 17.

    J. Liu and S. Chow. Sample size determination for the two one-sided tests procedure in bioequivalence.J. Pharmacokin. Biopharm. 20:101–104 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    C. Jennison and B. W. Turnbull. Interim analysis: the repeated confidence interval approach (with discussion).J. Roy. Statis. Soc. SeriesB 51:305–361 (1989).

    Google Scholar 

  19. 19.

    C. Jennison and B. W. Turnbull. Exact calculations for sequentialt, X 2 andF tests.Biometrika 78:133–141 (1991).

    Google Scholar 

  20. 20.

    E. V. Slud and L. J. Wei. Two-sample repeated significance tests based on the modified Wilcoxon statistic.J. Am. Statist. Assoc. 77:855–861 (1982).

    Article  Google Scholar 

  21. 21.

    K. Kim and D. L. Demets. Design and analysis of group sequential tests based on the Type I error spending rate function.Biometrika 74:149–154 (1987).

    Article  Google Scholar 

  22. 22.

    A. L. Gould and V. J. Pecore. Group sequential methods for clinical trials allowing early acceptance ofH o and incorporating costs.Biometrika 69:75–80 (1982).

    Google Scholar 

  23. 23.

    A. L. Gould. Planning and revising the sample size for a trial.Statist. Med. 14:1039–1051 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    E. J. Dudewicz. Confidence intervals for power, with special reference to medical trials.Aust. J. Stat. 14:211–216 (1972).

    Article  Google Scholar 

  25. 25.

    E. Diletti, D. Hauschke, and V. W. Steinijans. Sample size determination for bioequivalence assessment by means of confidence intervals.Int. J. Clin. Pharmacol. Ther. Toxicol. 29:1–8 (1991).

    CAS  PubMed  Google Scholar 

  26. 26.

    D. Hauschke, V. W. Steinijans, E. Diletti, and M. Burke. Sample size determination for bioequivalence assessment using a multiplicative model.J. Pharmacokin. Biopharm. 20:557–561 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    S. Emerson and T. R. Fleming. Parameter estimation following group sequential hypothesis testing.Biometrika 77:875–892 (1990).

    Article  Google Scholar 

  28. 28.

    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in Pascal, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  29. 29.

    S. Anderson and W. W. Hauck. Consideration of individual bioequivalence.J. Pharmacokin. Biopharm. 18:259–273 (1990).

    CAS  Article  Google Scholar 

  30. 30.

    G. Ekbohm and H. Melander. The subject-by-formulation interaction as a criterion of interchangeability of drugs.Biometrics 45:1249–1254 (1989).

    Article  Google Scholar 

  31. 31.

    D. J. Holder and F. Hsuan. Moment-based criteria for determining bioequivalence.Biometrika 80:835–846 (1993).

    Article  Google Scholar 

  32. 32.

    S. Hwang, P. B. Huber, M. Hesney, and K. C. Kwan. Bioequivalence and interchangeability.J. Pharm. Sci. 67:IV (1978).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    M. H. Gail, D. L. Demets, and E. V. Slud, in R. Johnson and J. Crowley (eds.),Survival Analysis, Monograph Series 2, IMS Lecture Notes, Hayward, CA, 1981. p. 287–301.

    Google Scholar 

  34. 34.

    E. V. Slud. Sequential linear rank tests for two-sample censored survival data.Ann. Statist. 12:551–571 (1984).

    Article  Google Scholar 

  35. 35.

    D. Demets and M. H. Gail. Use of logrank tests and group sequential methods at fixed calendar times.Biometrics 41:1039–1044 (1985).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    K. K. G. Lan and D. L. Demets. Discrete sequential boundaries for clinical trials.Biometrika 70:659–663 (1983).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Lawrence Gould.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gould, A.L. Group sequential extensions of a standard bioequivalence testing procedure. Journal of Pharmacokinetics and Biopharmaceutics 23, 57–86 (1995). https://doi.org/10.1007/BF02353786

Download citation

Key Words

  • trial design
  • sample size
  • interim analysis
  • bioavailability
  • group sequential