Hyperfine Interactions

, Volume 47, Issue 1–4, pp 299–310 | Cite as

Angular dependent rayleigh scattering of Mössbauer radiation on proteins

  • G. U. Nienhaus
  • H. Hartmann
  • F. Parak
  • J. Heinzl
  • E. Huenges
Oral Contributions


RSMR experiments with57Fe radiation were performed on myoglobin. An areasensitive detector was employed for simultaneous angular dependent collection of the scattered quanta up to a maximum angle 2θ of 17‡. Experimental data of polycrystalline and lyophilized myoglobin are compared with computer calculations of the scattering which are based on the atomic coordinates determined by X-ray structure analysis. Special attention has been paid to the influence of coherence effects from collectively moving parts of the protein. A simple model is introduced in order to take into account these segmental motions. Our first results indicate that the sizes of collectively moving segments are comparable with spheres of about 6 å in diameter in dry myoglobin. In myoglobin crystals, where the molecules are surrounded by large hydration shells, the movements appear to be correlated in segments with sizes comparable to helices.


Radiation Thin Film Hydration Coherence Structure Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder and I.C. Gunsalus, Biochem. 14 (1975)5355.Google Scholar
  2. [2]
    H. Frauenfelder, G.A. Petsko and D. Tsernoglou, Nature 280(1979)558.CrossRefGoogle Scholar
  3. [3]
    H. Frauenfelder, F. Parak and R.D. Young, Ann. Rev. Biophy. Chem. 17(1988)451.Google Scholar
  4. [4]
    F. Parak and H. Formanek, Acta Cryst. A27(1971)573.Google Scholar
  5. [5]
    H. Hartmann, F. Parak, W. Steigemann, G.A. Petsko, D. Ringe-Ponzi and H. Frauenfelder, Proc. Natl. Acad. Sci. USA 79(1982)4967.ADSGoogle Scholar
  6. [6]
    Yu. F. Krupyanskii, F. Parak, V.I. Goldanskii, R.L. Mössbauer. E. Gaubmann, H. Engelmann and I.P. Suzdalev, Z. Naturforsch. 37c(1982)57.Google Scholar
  7. [7]
    G. Albanese, A. Deriu, F. Cavatorta, Yu.F. Krupyanskii, I.P. Suzdalev and V.I. Goldanskii, Hyp. Int. 29(1986)1407.Google Scholar
  8. [8]
    R.L. Mössbauer. F. Parak and W. Hoppe, in:Mössbauer Spectroscopy II, ed. U. Gonser (Springer-Verlag, Berlin, 1981) pp. 5–30.Google Scholar
  9. [9]
    G.U. Nienhaus, F. Drepper, F. Parak, R.L. Mössbauer. D. Bade and W. Hoppe, Nucl. Instr. Mein. A256(1987)581.ADSGoogle Scholar
  10. [10]
    E. Huenges, J. Loock, H. Morinaga and F. Parak, Nucl. Instr. Meth. 203(1982)527.Google Scholar
  11. [11]
    R.L. Mössbauer, Hyp. Int. 33(1987)199.Google Scholar
  12. [12]
    G.U. Nienhaus and F. Parak, Hyp. Int. 29(1986)1451.Google Scholar
  13. [13]
    F. Parak, H. Hartmann, K.D. Aumann, H. Reuscher, G. Rennekamp, H. Bartunik and W. Steigemann, Eur. Biophys. J. 15(1987)237.CrossRefGoogle Scholar
  14. [14]
    G.P. Singh, F. Parak, S. Hunklinger and K. Dransfeld, Phys. Rev. Lett. 47(1981)685.CrossRefADSGoogle Scholar
  15. [15]
    F. Parak, H. Hartmann, G.U. Nienhaus and J. Heidemeier, in:Structure, Dynamics and Function of Biomolecules, ed. A. Ehrenberg, R. Rigler, A. GrÄslund and L. Nilsson (Springer-Verlag, Berlin, 1987) pp. 30–33.Google Scholar
  16. [16]
    A.H. Narten and H.A. Levy, in:Water — A Comprehensive Treatise, ed. F. Franks, Vol. 1 (Plenum Press, New York, 1972) pp. 311–332.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1989

Authors and Affiliations

  • G. U. Nienhaus
    • 1
  • H. Hartmann
    • 1
  • F. Parak
    • 1
  • J. Heinzl
    • 2
  • E. Huenges
    • 2
  1. 1.Institut für Physikalische Chemie der UniversitÄt MünsterMünsterF.R.G.
  2. 2.Physik-Department der T.U. MünchenGarchingF.R.G.

Personalised recommendations