Advertisement

Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis

  • G. Morren
  • M. Wolf
  • P. Lemmerling
  • U. Wolf
  • J. H. Choi
  • E. Gratton
  • L. De Lathauwer
  • S. Van Huffel
Article

Abstract

Fast changes, in the range of milliseconds, in the optical properties of cerebral tissue are associated with brain activity and can be detected using noninvasive near-infrared spectroscopy (NIRS). These changes are assumed to be caused by changes in the light scattering properties of the neuronal tissue. The aim of this study was to develop highly sensitive data analysi algorithms to detect this fast signal, which is small compared with other physiological signals. A frequency-domain tissue oximeter, whose laser diodes were intensity modulated at 110 MHz, was used. The amplitude, mean intensity and phase of the modulated optical signal were measured at a sample rate of 96 Hz. The probe, consisting of four crossed source detector pairs was placed above the motor cortex, contralateral to the hand performing a tapping exercise consisting of alternating rest and tapping periods of 20 s each. An adaptive filter was used to remove the arterial pulsatility from the optical signals. Independent component analysis allowed further separation of a signal component containing the fast signal. In nine out of 14 subjects, a significant fast neuronal signal related to the finger tapping was found in the intensity signals. In the phase signals, indications of the fast signal were found in only two subjects.

Keywords

Near-infrared spectroscopy Functional monitoring independent component analysis Time-frequency analysis Adaptive filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, A. J., andSejnowski, T. J. (1995): ‘An information-maximisation approach to blind separation and blind deconvolution’,Neural Comput.,7, pp. 1129–1159Google Scholar
  2. Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., andMoulines, E. (1997): ‘A blind source separation technique using second order statistics’,IEEE Trans. Signal Process.,45, pp. 434–444Google Scholar
  3. Cardoso, J. F. (1999): ‘High-order contrasts for independent component analysis’,Neural Comput.,11, pp. 157–192CrossRefGoogle Scholar
  4. Comon, P. (1994): ‘Independent component analysis, A new concept?’,Signal Process.,36, pp. 287–314CrossRefMATHGoogle Scholar
  5. De Lathauwer, L. (1997): ‘Signal processing based on multilinear algebra’. PhD thesis, K.U.LeuvenGoogle Scholar
  6. DeSoto, M. C., Fabiani, M., Geary, D. C., andGratton, G. (2001): When in doubt, do it both ways: brain evidence of the simultaneous activation of conflicting motor responses in a spatial stroop task’,J. Cogn. Neurosci.,13, pp. 523–536CrossRefGoogle Scholar
  7. Gratton, G., andCorballis, P. M. (1995): ‘Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal’,Psychophysiology,32, pp. 292–299Google Scholar
  8. Gratton, G., Fabiani, M., Friedman, D., Franceschini, M. A., Fantini, S., Corballis, P. M., andGratton, E. (1995a): ‘Rapid changes of optical parameters in the human brain during a tapping task’,J. Cogn. Neurosci.,7, pp. 446–456Google Scholar
  9. Gratton, G., Corballis, P. M., Cho, E., Fabiani, M., andHood, D. C. (1995b): ‘Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation’,Psychophysiology,32, pp. 505–509Google Scholar
  10. Gratton, G., Fabiani, M., Corballis, P. M., Hood, D. C., Goodman-Wood, M. R., Hirsch, J., Kim, K., Friedman, D., andGratton, E. (1997): ‘Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMR’,Neuroimage,6, pp. 168–180CrossRefGoogle Scholar
  11. Gratton, G., andFabiani, M. (2001): ‘The event-related optical signal: a new tool for studying brain function’,Int. J. Psychophysio.,42, pp. 109–121Google Scholar
  12. Gratton, G., andFabiani, M. (2003): ‘The event-related optical signal (EROS) in visual cortex: replicability, consistency. localization, and resolution’,Psychophysiology,40, pp. 561–571Google Scholar
  13. Haykin, S. (1996): ‘Adaptive filter theory ’ (Prentice Hall, 1996)Google Scholar
  14. Hudetz, A. G., Biswal, B. B., Shen, H., Lauer, K. K., andKampine, J. P. (1998): ‘Spontaneous fluctuations in cerebral oxygen supply. An introduction’,Adv. Exp. Med. Biol.,454, pp. 551–559Google Scholar
  15. Hyvärinen, A., andOja, E. (2000): ‘Independent component analysis: algorithms and applications’,Neural Netw.,13, pp. 411–430CrossRefGoogle Scholar
  16. Hyvärinen, A., Karhunen, J., andOja, E. (2001): ‘Independent component analysis’ (Wiley, 2001)Google Scholar
  17. Jasper, H. H. (1957): ‘Report of the committee on methods of clinical examination in electroencephalography’,Electroencephalogr. Clin. Neurophysiol.,10, pp. 370–375Google Scholar
  18. Kay, S. M. (1988): ‘Modern spectral estimation’ (Prentice Hall, 1988)Google Scholar
  19. Lehmann, E. L. (1975): ‘Nonparametric statistical methods based on ranksGoogle Scholar
  20. Malonek, D., andGrinvals, A. (1997): ‘Vascular regulation at submillimeter range’,Adv. Exp. Med. Biol.,413, pp. 215–219Google Scholar
  21. Molgedey, L., andSchuster, H. G. (1994): ‘Separation of a mixture of independent signals using time delayed correlations’,Phys. Rev. Lett.,72, pp. 3634–3637CrossRefGoogle Scholar
  22. Morren, G., Wolf, M., Lemmerling, P., Wolf, U., Choi, J. H., Gratton, E., De Lathauwer, L., andVan Huffel, S. (2002): ‘Extraction of fast neuronal changes from multichannel, functional near-infrared spectroscopy signals using independent component analysis’, in ‘Progress in biomedical optics and imaging’, Proc. SPIE,4623 SPIE-BiOS, pp. 68–76Google Scholar
  23. Obrig, H., andVillringer, A. (2003): ‘Beyond the visible-Imaging the human brain with light’,J. Cereb. Blood Flow Metab.,23, pp. 1–18Google Scholar
  24. Rector, D. M., Poe, G. R., Kristensen, M. P., andHarper, R. M. (1997): ‘Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation’,J. Neurophysiol.,78, pp. 1707–1713Google Scholar
  25. Rinne, T., Gratton, G., Fabiani, M., Cowan, N., Maclin, E., Stinard, A., Sinkkonen, J., Alho, K., andNaatanen, R. (1999): ‘Scalp-recorded optical signals make sound processing in the auditory cortex visible?’,Neuroimage,10, pp. 620–624CrossRefGoogle Scholar
  26. Steinbrink, J., Kohl, M., Obrig, H., Curio, G., Syré, F., Thomas, F., Wabnitz, H., Rinneberg, H., andVillringer, A. (2000): ‘Somatosensory evoked fast optical intensity changes detected noninvasively in the adult human head’,Neurosci. Lett.,291, pp. 105–108CrossRefGoogle Scholar
  27. Stepnoski, R. A., LaPorta, A., Raccuia-Behlig, F., Blonder, G. E., Slusher, R. E., andKleinfeld, D. (1991): ‘Noninvasive detection of changes in membrane potential cultured neurons by light scattering’,Proc. Natl. Acad. Sci.,88, pp. 9382–9386Google Scholar
  28. Syré, F., Obrig, H., Steinbrink, J., Kohl, M., Wenzel, R., andVilrringer, A. (2000): ‘Are VEP correlated fast optical changes detectable in the adult by non-invasive near infrared spectroscopy (NIRS)?’,Adv. Exp. Med. Biol.,530, pp. 421–431Google Scholar
  29. Tasaki, I. (1999): ‘Rapid structural changes in nerve fibers and cells associated with their excitation processes’,Jpn. J. Physiol.,49, pp. 125–138CrossRefGoogle Scholar
  30. Toga, A. W., andMazziota, J. C. (Eds) (1996): ‘Brain mapping: the methods’ (Academic Press, 1996)Google Scholar
  31. Villringer, A., andChance, B. (1997): ‘Non-invasive optical spectroscopy and imaging of human brain function’,Trends Neurosci.,20, pp. 435–442CrossRefGoogle Scholar
  32. Wolf, M., Wolf, U., Choi, J. H., Gupta, R., Safonova, L. P., Paunescu, L. A., Michalos, A., andGratton, E. (2002): ‘Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex’,Neuroimage,17, pp. 1868–1875CrossRefGoogle Scholar
  33. Wolf, M., Wolf, U., Choi, J. H., Toronov, V., Paunescu, L. A., Michalos, A., andGratton, E. (2003): ‘Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry’,Psychophysiology,40, pp. 521–528CrossRefGoogle Scholar
  34. Ziehe, A., andMüller, K.-R. (1998): ‘TDSEP-an effcient algorithm for blind separation using time structure’, inNiklasson, L., Boden, M., andZiemke, T. (Eds): ‘Perspectives in neural computing’ Proc. 8th International Conference on Artificial Neural NetworksICANN98, (Springer Verlag, 1998)Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • G. Morren
    • 1
  • M. Wolf
    • 2
  • P. Lemmerling
    • 1
  • U. Wolf
    • 2
  • J. H. Choi
    • 2
  • E. Gratton
    • 2
  • L. De Lathauwer
    • 1
  • S. Van Huffel
    • 1
  1. 1.Department of Electrical Engineering (ESAT), SCD-SISTA DivisionK.U. LeuvenBelgium
  2. 2.Laboratory for Fluorescence DynamicsUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations