Mechanotransduction of bone cellsin vitro: Mechanobiology of bone tissue

  • M. Mullender
  • A. J. El Haj
  • Y. Yang
  • M. A. van Duin
  • E. H. Burger
  • J. Klein-Nulend
Special Section: Biomechanical Interactions in Tissue Engineering and Surgical Repair (BITES)


Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6±0.3 Pa). Cyclic strain (1000 μstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.


Mechanotransduction Osteocytes Adaptive remodelling Bone cells Fluid shear stress Cell strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajubi, N. E., Klein-Nulend, J., Nijweide, P. J., Vrijheid-Lammers, T., Alblas, M. J., andBurger, E. H. (1996): ‘Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes-a cytoskeleton-dependent process’,Biochem. Biophys. Res. Commun.,225, pp. 62–68CrossRefGoogle Scholar
  2. Akhouayri, O., Lafage-Proust, M. H., Rattner, A., Laroche, N., Caillot-Augusseau, A., Alexandre, C., andVico, L. (1999): ‘Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels’,J. Cell Biochem.,76, pp. 217–230Google Scholar
  3. Ali, M. H., andSchumacker, P. T. (2002): ‘Endothelial responses to mechanical stress: where is the mechanosensor?’,Crit. Care Med.,30, pp. S198-S206Google Scholar
  4. Altman, G. H., Horan, R. L., Martin, I., Farhadi, J., Stark, P. R., Volloch, V., Richmond, J. C., Vunjak-Novakovic, G., andKaplan, D. L. (2002): ‘Cell differentiation by mechanical stress’,FASEB J.,16, pp. 270–272Google Scholar
  5. Aspenberg, P., Goodman, S., Toksvig-Larsen, S., Ryd, L., andAlbrektsson, T. (1992): ‘Intermittent micromotion inhibits bone ingrowth. Titanium implants in rabbits’,Acta Orthop. Scand.,63, pp. 141–145Google Scholar
  6. Augat, P., Merk, J., Wolf, S., andClaes, L. (2001): ‘Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing’,J. Orthop. Trauma,15, pp. 54–60Google Scholar
  7. Barnes, G. L., Kostenuik, P. J., Gerstenfeld, L. C., andEinhorn, T. A. (1999): ‘Growth factor regulation of fracture repair’,J. Bone Miner. Res.,14, pp. 1805–1815Google Scholar
  8. Basso, N., andHeersche, J. N. (2002) ‘Characteristics ofin vitro osteoblastic cell loading models’,Bone,30, pp. 347–351CrossRefGoogle Scholar
  9. Bottlang, M., Simnacher, M., Schmitt, H., Brand, R. A., andClaes, L. (1997): ‘A cell strain system for small homogeneous strain applications’,Biomed. Tech. (Berl.),42, pp. 305–309Google Scholar
  10. Brighton, C. T., Fisher, J. R. Jr., Levine, S. E., Corsetti, J. R., Reilly, T., Landsman, A. S., Williams, J. L., andThibault, L. E. (1996): ‘The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus’,J. Bone Joint Surg. Am.,78, pp. 1337–1347Google Scholar
  11. Brodland, G. W., Dolovich, A. T., andDavies, J. E. (1992): ‘Pretension critically affects the incremental strain field on pressure- loaded cell substrate membranes’,J. Biomech. Eng.,114, pp. 418–420Google Scholar
  12. Brown, T. D. (2000): ‘Techniques for mechanical stimulation of cellsin vitro: a review’,J. Biomech.,33, pp. 3–14CrossRefGoogle Scholar
  13. Burger, E. H., andKlein-Nulend, J. (1999): ‘Mechanotransduction in bone-role of the lacuno-canalicular network’,FASEB J.,13, pp. S101-S112Google Scholar
  14. Burr, D. B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., andSimkin, A. (1996): ‘In vivo measurement of human tibial strains during vigorous activity’,J Bone,18, pp. 405–410Google Scholar
  15. Busse, R., andFleming, I. (1998): ‘Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors’,J. Vasc. Res.,35, pp. 73–84CrossRefGoogle Scholar
  16. Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., andChiquet-Ehrismann, R. (1996): ‘Regulation of extracellular matrix synthesis by mechanical stress’,Biochem. Cell Biol.,74, pp. 737–744Google Scholar
  17. Cillo, J. E. Jr., Gassner, R., Koepsel, R. R., andBuckley, M. J. (2000): ‘Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis’,Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.,90, pp. 147–154Google Scholar
  18. Eastwood, M., McGrouther, D. A., andBrown, R. A. (1998): ‘Fibroblast responses to mechanical forces’,Proc. Inst. Mech. Eng. [H.],212, pp. 85–92Google Scholar
  19. El Haj, A. J., Walker, L. M., Preston, M. R., andPublicover, S. J. (1999): ‘Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels’,Med. Biol. Eng. Comput.,37, pp. 403–409Google Scholar
  20. Forwood, M. R. (1996): ‘Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loadingin vivo, J. Bone Miner. Res.,11, pp. 1688–1693Google Scholar
  21. Forwood, M. R., Kelly, W. L., andWorth, N. F. (1998): ‘Localisation of prostaglandin endoperoxide H synthase (PGHS)-1 and PGHS-2 in bone following mechanical loading in vivo’,Anat. Rec.,252, pp. 580–586CrossRefGoogle Scholar
  22. Frangos, J. A., Eskin, S. G., andIves, C. L. (1985): ‘Flow effects on prostacyclin production by cultured human endothelial cells’,Science,227, pp. 1477–1479Google Scholar
  23. Gassner, R. J., Buckley, M. J., Studer, R. K., Evans, C. H., andAgarwal, S. (2000): ‘Interaction of strain and interleukin-1 in articular cartilage: effects on proteoglycan synthesis in chondrocytes’,Int. J. Oral Maxillofac. Surg.,29, pp. 389–394CrossRefGoogle Scholar
  24. Goodship, A. E., Cunningham, J. L., andKenwright, J. (1998): ‘Strain rate and timing of stimulation in mechanical modulation of fracture healing’,Clin. Orthop.,355, pp. S105-S115Google Scholar
  25. Hankemeier, S., Grassel, S., Plenz, G., Spiegel, H. U., Bruckner, P., andProbst, A. (2001): ‘Alteration of fracture stability influences chondrogenesis, osteogenesis and immigration of macrophages’,J. Orthop. Res.,19, pp. 531–538CrossRefGoogle Scholar
  26. Hannouche, D., Petite, H., andSedel, L. (2001): ‘Current trends in the enhancement of fracture healing’,J. Bone Joint Surg. Br.,83, pp. 157–164CrossRefGoogle Scholar
  27. Helfrich, M. H., Evans, D. E., Grabowski, P. S., Pollock, J. S., Ohshima, H., andRalston, S. H. (1997): ‘Expression of nitric oxide synthase isoforms in bone and bone cell cultures’,J. Bone Miner. Res.,12, pp. 1108–1115Google Scholar
  28. Hert, J. (1994): ‘A new attempt at the interpretation of the functional architecture of the cancellous bone’,J. Biomech.,27, pp. 239–242CrossRefGoogle Scholar
  29. Howard, P. S., Kucich, U., Taliwal, R., andKorostoff, J. M. (1998): ‘Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts’,J. Periodontal Res.,33, pp. 500–508Google Scholar
  30. Ikegame, M., Ishibashi, O., Yoshizawa, T., Shimomura, J., Komori, T., Ozawa, H., andKawashima, H. (2001): ‘Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture’,J. Bone Miner. Res.,16, pp. 24–32Google Scholar
  31. Ilizarov, G. A. (1989): ‘The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction’,Clin. Orthop.,239, pp. 263–285Google Scholar
  32. Ilizarov, G. A. (1990): ‘Clinical application of the tension-stress effect for limb lengthening’,Clin. Orthop.,250, pp. 8–26Google Scholar
  33. Jee, W. S. S. (2001): ‘Integrated bone tissue physiology: anatomy and physiology’, inCowing, S. C. (Ed.): ‘Bone mechanics handbook’ (CRC Press, Boca Raton, FL, USA, 2001)Google Scholar
  34. Jessop, H. L., Rawlinson, S. C., Pitsillides, A. A., andLanyon, L. E. (2002): ‘Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways’,Bone,31, pp. 186–194CrossRefGoogle Scholar
  35. Joldersma, M., Klein-Nulend, J., Oleksik, A. M., Heyligers, I. C., andBurger, E. H. (2001): ‘Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women’,Am. J. Physiol. Endocrinol. Metab.,280, pp. E436-E442Google Scholar
  36. Jones, D. B., Nolte, H., Scholubbers, J. G., Turner, E., andVeltel, D. (1991): ‘Biochemical signal transduction of mechanical strain in osteoblast-like cells’,Biomaterials,12, pp. 101–110CrossRefGoogle Scholar
  37. Kamiya, A., andAndo, J. (1996): ‘Response of vascular endothelial cells to fluid shear stress: mechanism’, inHayashi, A., Kamiyn, A., andOno, K. (Eds.): ‘Biomechanics-functional adaptation and remodeling’ (Springer, Tokyo, 1996), pp. 29–56Google Scholar
  38. Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Ignatius, A., andClaes, L. (2000): ‘Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity’,J. Biomech.,33, pp. 45–51CrossRefGoogle Scholar
  39. Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Beck, A., Claes, L., andIgnatius, A. (2002): ‘Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain’,J. Biomech.,35, pp. 873–880CrossRefGoogle Scholar
  40. Kawata, A., andMikuni-Takagaki, Y. (1998): ‘Mechanotransduction in stretched osteocytes—temporal expression of immediate early and other genes’,Biochem. Biophys. Res. Commun.,246, pp. 404–408CrossRefGoogle Scholar
  41. Kessler, P. A., Merten, H. A., Neukam, F. W., andWiltfang, J. (2002): ‘The effects of magnitude and frequency of distraction forces on tissue regeneration in distraction osteogenesis of the mandible’,Plast. Reconstr. Surg.,109, pp. 171–180Google Scholar
  42. Klein-Nulend, J., Semeins, C. M., Ajubi, N. E., Nijweide, P. J., andBurger, E. H. (1995a): ‘Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation’,Biochem. Biophys. Res. Commun.,217, pp. 640–648Google Scholar
  43. Klein-Nulend, J., Van Der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A., Nijweide, P. J., andBurger, E. H. (1995b): ‘Sensitivity of osteocytes to biomechanical stressin vitro’,FASEB J.,9, pp. 441–445Google Scholar
  44. Klein-Nulend, J., Burger, E. H., Semeins, C. M., Raisz, L. G., andPilbeam, C. C. (1997): ‘Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells’,J. Bone Miner. Res.,12, pp. 45–51Google Scholar
  45. Klein-Nulend, J., Helfrich, M. H., Sterck, J. G., MacPherson, H., Joldersma, M., Ralston, S. H., Semeins, C. M., andBurger, E. H. (1998): ‘Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent’,Biochem. Biophys. Res. Commun.,250, pp. 108–114CrossRefGoogle Scholar
  46. Knothe Tate, M. L., Steck, R., Forwood, M. R., andNiederer, P. (2000): ‘In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation’,J. Exp. Biol.,203, pp. 2737–2745Google Scholar
  47. Lanyon, L. E., andBourn, S. (1979): ‘The influence of mechanical function on the development and remodeling of the tibia. An experimental study in sheep’,J. Bone Joint Surg. Am.,61, pp. 263–273Google Scholar
  48. Larsson, S., Kim, W., Caja, V. L., Egger, E. L., Inoue, N., andChao, E. Y. (2001): ‘Effect of early axial dynamization on tibial bone healing: a study in dogs’,Clin. Orthop.,388, pp. 240–251Google Scholar
  49. Lee, H. S., Millward-Sadler, S. J., Wright, M. O., Nuki, G., andSalter, D. M. (2000): ‘Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation’,J. Bone Miner. Res.,15, pp. 1501–1509Google Scholar
  50. Lyall, F., andEl Haj, A. J. (1994): ‘Cells and biomechanics’ (Cambridge University Press, 1994)Google Scholar
  51. Mak, A. F., Huang, D. T., Zhang, J. D., andTong, P. (1997): ‘Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity’,J. Biomech.,30, pp. 11–18CrossRefGoogle Scholar
  52. Meyer, U., Meyer, T., Wiesmann, H. P., Stratmann, U., Kruse-Losler, B., Maas, H., andJoos, U. (1999): ‘The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis’,J. Oral Maxillofac. Surg.,57, pp. 1331–1339Google Scholar
  53. Meyer, U., Wiesmann, H. P., Meyer, T., Schulze-Osthoff, D., Jasche, J., Kruse-Losler, B., andJoos, U. (2001): ‘Microstructural investigations of strain-related collagen mineralization’,Br. J. Oral Maxillofac. Surg.,39, pp. 381–389Google Scholar
  54. Mikuni-Takagaki, Y., Suzuki, Y., Kawase, T., andSaito, S. (1996): ‘Distinct responses of different populations of bone cells to mechanical stress’,Endocrinology,137, pp. 2028–2035CrossRefGoogle Scholar
  55. Mikuni-Takagaki, Y. (1999): ‘Mechanical responses and signal transduction pathways in stretched osteocytes’,J. Bone Miner. Metab.,17, pp. 57–60CrossRefGoogle Scholar
  56. Miyauchi, A., Notoya, K., Mikuni-Takagaki, Y., Takagi, Y., Goto, M., Miki, Y., Takano-Yamamoto, T., Jinnai, K., Takahashi, K., Kumegawa, M., Chihara, K., andFujita, T. (2000): ‘Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes’,J. Biol. Chem.,275, pp. 3335–3342CrossRefGoogle Scholar
  57. Mosley, J. R., andLanyon, L. E. (1998): ‘Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats’,Bone,23, pp. 313–318CrossRefGoogle Scholar
  58. Murray, D. W., andRushton, N. (1990): ‘The effect of strain on bone cell prostaglandin E2 release: a new experimental method’,Calcif. Tissue Int.,47, pp. 35–39Google Scholar
  59. Neidlinger-Wilke, C., Wilke, H. J., andClaes, L. (1994): ‘Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application’,J. Orthop. Res.,12, pp. 70–78CrossRefGoogle Scholar
  60. Neidlinger-Wilke, C., Stalla, I., Claes, L., Brand, R., Hoellen, I., Rubenacker, S., Arand, M., andKinzl, L. (1995): ‘Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain’,J. Biomech.,28, pp. 1411–1418Google Scholar
  61. Neidlinger-Wilke, C., Grood, E. S., Wang, J. H. C., Brand, R. A., andClaes, L. (2001): ‘Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates’,J. Orthop. Res.,19, pp. 286–293CrossRefGoogle Scholar
  62. Owan, I., Burr, D. B., Turner, C. H., Qiu, J., Tu, Y., Onyia, J. E., andDuncan, R. L. (1997): ‘Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain’,Am. J. Physiol.,273, pp. C810-C815Google Scholar
  63. Paccione, M. F., Mehrara, B. J., Warren, S. M., Greenwald, J. A., Spector, J. A., Luchs, J. S., andLongaker, M. T. (2001): ‘Rat mandibular distraction osteogenesis: latency, rate, and rhythm determine the adaptive response’,J. Craniofac. Surg.,12, pp. 175–182Google Scholar
  64. Peake, M. A., Cooling, L. M., Magnay, J. L., Thomas, P. B., andEl Haj, A. J. (2000): ‘Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells’,J. Appl. Physiol.,89, pp. 2498–2507Google Scholar
  65. Petrtyl, M., Hert, J., andFiala, P. (1996): ‘Spatial organization of the haversian bone in man’,J. Biomech.,29, pp. 161–169Google Scholar
  66. Pitsillides, A. A., Rawlinson, S. C., Suswillo, R. F., Bourrin, S., Zaman, G., andLanyon, L. E. (1995): ‘Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling?’,FASEB J.,9, pp. 1614–1622Google Scholar
  67. Prajapati, R. T., Eastwood, M., andBrown, R. A. (2000): ‘Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: monitored by protease release’,Wound. Repair Regen.,8, pp. 238–246Google Scholar
  68. Radomisli, T. E., Moore, D. C., Barrach, H. J., Keeping, H. S., andEhrlich, M. G. (2001): ‘Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis’,J. Orthop. Res.,19, pp. 1049–1056CrossRefGoogle Scholar
  69. Rawlinson, S. C., El Haj, A. J., Minter, S. L., Tavares, I. A., Bennett, A., andLanyon, L. E. (1991): ‘Loading-related increases in prostaglandin production in cores of adult canine cancellous bonein vitro: a role for prostacyclin in adaptive bone remodeling?’,J. Bone Miner. Res.,6, pp. 1345–1351Google Scholar
  70. Rubin, C. T. (1984): ‘Skeletal strain and the functional significance of bone architecture’,Calcif. Tissue Int.,36, pp. S11-S18Google Scholar
  71. Shelton, R. M., andEl Haj, A. J. (1992): ‘A novel microcarrier bead model to investigate bone cell responses to mechanical compressionin vitro’,J. Bone Miner. Res., pp. S403–S405Google Scholar
  72. Smalt, R., Mitchell, F. T., Howard, R. L., andChambers, T. J. (1997): ‘Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain’,Am. J. Physiol.,273, pp. E751-E758Google Scholar
  73. Tanaka, S. M., Li, J., Duncan, R. L., Yokota, H., Burr, D. B., andTurner, C. H. (2003): ‘Effects of broad frequency vibration on cultured osteoblasts’,J. Biomech.,36, pp. 73–80CrossRefGoogle Scholar
  74. Tate, M. L., Niederer, P., andKnothe, U. (1998): ‘In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading’,Bone,22, pp. 107–117Google Scholar
  75. Thomas, G. P., andEl Haj, A. J. (1996): ‘Bone marrow stromal cells are load responsivein vitro’,Calcif. Tissue Int.,58, pp. 101–108CrossRefGoogle Scholar
  76. Thoumine, O., Ziegler, T., Girard, P. R., andNerem, R. M. (1995): ‘Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure’,Exp. Cell Res.,219, pp. 427–441CrossRefGoogle Scholar
  77. Toma, C. D., Ashkar, S., Gray, M. L., Schaffer, J. L., andGerstenfeld, L. C. (1997): ‘Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts’,J. Bone Miner. Res.,12, pp. 1626–1636Google Scholar
  78. Turner, C. H., Forwood, M. R., andOtter, M. W. (1994): ‘Mechanotransduction in bone: do bone cells act as sensors of fluid flow?’,FASEB J.,8, pp. 875–878Google Scholar
  79. Turner, C. H., Owan, I., andTakano, Y. (1995): ‘Mechanotransduction in bone: role of strain rate’,Am. J. Physiol.,269, pp. E438-E442Google Scholar
  80. Turner, C. H., Takano, Y., Owan, I., andMurrell, G. A. (1996): ‘Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats’,Am. J. Physiol.,270, pp. E634-E639Google Scholar
  81. Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., andHarrison, D. G. (1995): ‘Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress’,Am. J. Physiol.,269, pp. C1371-C1378Google Scholar
  82. Wadhwa, S., Godwin, S. L., Peterson, D. R., Epstein, M. A., Raisz, L. G., andPilbeam, C. C. (2002): ‘Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway’,J. Bone Miner. Res.,17, pp. 266–274Google Scholar
  83. Walker, L. M., Holm, A., Cooling, L., Maxwell, L., Oberg, A., Sundqvist, T., andEl Haj, A. J. (1999): ‘Mechanical manipulation of bone and cartilage cells with ‘optical tweezers’’,FEBS Lett.,459, pp. 39–42CrossRefGoogle Scholar
  84. Walker, L. M., Publicover, S. J., Preston, M. R., Said Ahmed, M. A., andEl Haj, A. J. (2000): ‘Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain’,J. Cell Biochem.,79, pp. 648–661CrossRefGoogle Scholar
  85. Wang, N., Butler, J. P., andIngber, D. E. 1993, ‘Mechanotransduction across the cell surface and through the cytoskeleton’,Science,260, pp. 1124–1127Google Scholar
  86. Weinbaum, S., Cowin, S. C., andZeng, Y. (1994): ‘A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses’,J. Biomech.,27, pp. 339–360CrossRefGoogle Scholar
  87. Weinbaum, S., Guo, P., andYou, L. (2001): ‘A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes’,Biorheology,38, pp. 119–142Google Scholar
  88. Westbroek, I., Ajubi, N. E., Alblas, M. J., Semeins, C. M., Klein-Nulend, J., Burger, E. H., andNijweide, P. J. (2000): ‘Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow’,Biochem. Biophys. Res. Commun.,268, pp. 414–419CrossRefGoogle Scholar
  89. Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., andNomura, S. (1997): ‘Three modes of ossification during distraction osteogenesis in the rat’,J. Bone Joint Surg. Br.,79, pp. 824–830CrossRefGoogle Scholar
  90. You, J., Yellowley, C. E., Donahue, H. J., Zhang, Y., Chen, Q., andJacobs, C. R. (2000): ‘Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow’,J. Biomech. Eng.,122, pp. 387–393CrossRefGoogle Scholar
  91. Zaman, G., Pitsillides, A. A., Rawlinson, S. C., Suswillo, R. F., Mosley, J. R., Cheng, M. Z., Platts, L. A., Hukkanen, M., Polak, J. M., andLanyon, L. E. (1999): ‘Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes’,J. Bone Miner. Res.,14, pp. 1123–1131Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • M. Mullender
    • 1
  • A. J. El Haj
    • 2
  • Y. Yang
    • 2
  • M. A. van Duin
    • 1
  • E. H. Burger
    • 1
  • J. Klein-Nulend
    • 1
  1. 1.Department of Oral Cell Biology, Academic Center of Dentistry AmsterdamACTA-Vrije UniversiteitThe Netherlands
  2. 2.Centre for Science & Technology in MedicineKeele University Medical SchoolStoke-on-TrentUK

Personalised recommendations