Assessment of cartilage thickness utilising reflectance spectroscopy

Special Section: Biomechanical Interactions in Tissue Engineering and Surgical Repair (BITES)

Abstract

A new principle for cartilage layer thickness assessments in joints is presented. It is based on the differences between the absorption spectra of cartilage and subchondral bone (containing blood). High-resolution ultrasound measurements of cartilage thickness were compared with reflection spectroscopy data from the same area of bovine hip joint condyles. A simple mathematical model allowed calculation of thickness and comparison with ultrasound data. The cartilage thickness was changed by being ground in short episodes. For thicker cartilage layers, a high degree of reflection in the 400–600 nm wavelength interval was seen. For thinner cartilage layers, the characteristics of the spectra of blood and bone dominated those of cartilage. The mean (±SD) thickness of intact cartilage was 1.21±0.30 mm (n=30). In an exponential regression model, spectroscopic estimation of cartilage thickness showed a correlation coefficient of r=0.69 (n=182). For thinner cartilage layers (d<0.5 mm), the mean model error was 0.19±0.17 mm. Results from a bi-layer Monte Carlo simulation supported the assumption of an exponential relationship between spectroscopy data and reference ultrasound data. The conclusion is that optical reflection spectroscopy can be used for cartilage layer thickness assessment.

Keywords

Cartilage thickness Reflection spectroscopy Ultrasound Monte Carlo model Arthroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, R. D., andKates, J. (1983): ‘Arthroscopy of the knee’,Semin. Arthrites. Rheum.,13, pp. 188–199Google Scholar
  2. Armstrong, C. G., andMow, V. C. (1982): ‘Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content’,Am. J. Bone Joint Surg.,64A, pp. 88–94Google Scholar
  3. Beek, J. F., Blokland, P., Posthumus, P., Aalders, M., Pickering, J. W., Sterenborg, H. J. C. M., andVan Gemert, M. J. C. (1997): ‘In vitro double integrating-sphere optical properties of tissues between 630 and 1064 nm’,Phys. Med. Biol.,42, pp. 2255–2261Google Scholar
  4. Braunstein, E. M., Brandt, K. D., andAlbrecht, M. (1990): ‘MRI demonstration of hypertrophic articular repair in osteoarthritis’,Skel. Radiol.,19, pp. 335–339CrossRefGoogle Scholar
  5. De Mul, F. F. M., Koelink, M. H., Kok, M. L., Harmsma, P. J., Greve, J., Graaff, R., andAarnoudse, J. G. (1995): ‘Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue’,Appl. Opt.,34, pp. 6595–6611Google Scholar
  6. Drexler, W., Stamper, D., Jesser, C., Li, X., Pitris, C., Saunders, K., Martin, S., Lodge, M. B., Fujimoto, J. G., andBrezinski, M. E. (2001): ‘Correlation of collagen organization with polarization sensitive imaging ofin vivo cartilage: Implications for osteoarthritis’,J. Rheumatol.,28, pp. 1311–1318Google Scholar
  7. Firbank, M., Hiraoka, M., Essenpreis, M., andDelpy, D. T. (1993): ‘Measurement of the optical properties of the skull in the wavelength range 650–950 nm’,Phys. Med. Biol.,38, pp. 503–510Google Scholar
  8. Hall, F. M., andWyshak, G. (1980): ‘Thickness of cartilage in the normal knee’,J. Bone Joint. Surg.,62A, pp. 408–413Google Scholar
  9. Handley, R. C., Essex, T., andPooley, J. (1990): ‘Laser Doppler flowmetry and bone blood flow in an isolated perfusion preparation’,J. Med. Eng. Technol.,14, pp. 201–204Google Scholar
  10. Herrmann, J. M., Pitris, C., Bouma, B. E., Boppart, S. A., Jesser, C. A., Stamper, D. L., Fujimoto, J. G., Brezinski, M. E. (1999): ‘High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography’,J. Rheumatol.,26, pp. 627–635Google Scholar
  11. Hoch, D. H., Grodzinsky, A. J., Koob, T. J., Albert, M. L., andEyre, D. R. (1983): ‘Early changes in material properties of rabbit articular cartilage after meniscectomy’,J. Orthop. Res.,1, pp. 4–12CrossRefGoogle Scholar
  12. Jackson, R. W. (1983): ‘Current concepts review: Arthroscopic surgery’,J. Bone Joint Surg.,65, pp. 416–420Google Scholar
  13. Jurvelin, J. S., Räsänen, T., Kolmonen, P., andLyyra, T. (1995): ‘Comparison of optical needle probe and ultrasound technique for measurement of articular cartilage thickness’,J. Biomech.,28, pp. 231–235CrossRefGoogle Scholar
  14. Kladny, B., Marcus, P., Schiwy-Bochat, K.-H., Weseloh, G., andSwoboda, B. (1999): ‘Measurement of cartilage thickness in the human knee-joint by magnetic resonance imaging using a three-dimensional gradient-echo sequence’,Int. Orthopaed.,23, pp. 264–267Google Scholar
  15. Lehner, K. B., Rechl, H. P., Gmenwieser, J. K., Hueck, A. F., Lukas, H. P., andKohl, H. P. (1989): ‘Structure, function and degeneration of bovine hyaline cartilage: assessment with MR imagingin vitro’,Radiology,170, pp. 495–499Google Scholar
  16. Mah, E. T., Langlois, S. P., Lott, C. W., Lee, W. K., andBrown, G. (1990): ‘Detection of articular defects using magnetic resonance imaging: an experimental study’,Aust. N.Z. Surg.,60, pp. 977–981Google Scholar
  17. Modest, V. E., Murphy, M. C., andMann, R. W. (1989): ‘Optical verification of a technique for in situ ultrasonic measurement of articular cartilage thickness’,J. Biomech.,22, pp. 171–176CrossRefGoogle Scholar
  18. Mow, C. V., Gibbs, M. C., Lai, W. M., Zhu, W. B., andAthanasiou, K. A. (1989): ‘Biphasic indentation of articular cartilage. II-A numerical algorithm and an experimental study’,J. Biomech.,22, pp. 853–861CrossRefGoogle Scholar
  19. Nakanishi, K., Tanaka, H., Sugano, N., Sato, Y., Ueguchi, T., Kubota, T., Tamura, S., andNakamura, H. (2001): ‘MR-based three-dimensional presentation of cartilage thickness in the femoral head’,Eur. Radiol.,11, pp. 2178–2183CrossRefGoogle Scholar
  20. Nötzli, H. P., Swiontkowski, M. F., Thaxter, S. T., Carpenter III, G. K., andWyatt, R. (1989): ‘Laser Doppler flowmetry for bone blood flow measurements: Helium-neon laser light attenuation and depth of perfusion assessment’,J. Ortho. Res.,7, pp. 413–424CrossRefGoogle Scholar
  21. Peyron, J. G. (1986): ‘Osteoarthritis. The epidemiologic viewpoint’,Clin. Orthop.,213, pp. 13–19Google Scholar
  22. Recht, M. P., andResnick, D. (1994): ‘MR imaging of articular cartilage: current status and future directions’,AJR,163, pp. 283–290Google Scholar
  23. Rushfeldt, P. D., Mann, R. W., andHarris, W. H. (1981): ‘Improved techniques for measuringin vitro. The geometry and pressure distribution in the human acetabulun. I-Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness’,J. Biomech.,14, pp. 252–260Google Scholar
  24. Räsänen, T., Jurvelin, J., andHelminen, H. J. (1990): ‘Indentation and shear tests of bovine knee articular cartilage’,Biomech. Sem.,5, pp. 22–28Google Scholar
  25. Shepherd, A. P., andÖberg, P. Å (Eds) (1990): ‘Laser-Doppler flowmetry’ (Kluwer Academic Publishers, 1990)Google Scholar
  26. Swann, A. C., andSeedhom, B. B. (1989): ‘Improved technique for measuring the indentation and thickness of articular cartilage’,Proc. Inst. Mech. Eng.,203, pp. 143–150Google Scholar
  27. Takatani, S., andGraham, M. D. (1979): ‘Theoretical analysis of diffuse reflectance from a two-layer tissue model’,IEEE Trans. Biomed. Eng.,26, pp. 656–664Google Scholar
  28. Tuchin, V. (2000): ‘Tissue optics-light scattering methods and instruments for medical diagnosis’, in ‘Tutorial texts in optical engineering, Vol. TT38’ (SPIE Press, Washington, USA, 2000)Google Scholar
  29. Wayne, J. S., Brodrick, C. W., andMukherie, N. (1998): ‘Measurement of articular cartilage thickness in the articulated knee’,Ann. Biomed. Eng.,26, pp. 96–102CrossRefGoogle Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringLinköpings UniversitetLinköpingSweden
  2. 2.Department of MicrobiologyLinköpings UniversitetLinköpingSweden

Personalised recommendations