Analysis of auditory evoked potential parameters in the presence of radiofrequency fields using a support vector machines method

  • E. Maby
  • R. Le Bouquin Jeannes
  • C. Liegeok-Chauvel
  • B. Gourevitch
  • G. Faucon
Article

Abstract

The paper presents a study of global system for mobile (GSM) phone radio-frequency effects on human cerebral activity. The work was based on the study of auditory evoked potentials (AEPs) recorded from healthy humans and epileptic patients. The protocol allowed the comparison of AEPs recorded with or without exposure to electrical fields. Ten variables measured from AEPs were employed in the design of a supervised support vector machines classifier. The classification performance measured the classifier′s ability to discriminate features performed with or without radiofrequency exposure. Most significant features were chosen by a backward sequential selection that ranked the variables according to their pertinence for the discrimination. Finally, the most discriminating features were analysed statistically by a Wilcoxon signed rank test. For both populations, the N100 amplitudes were reduced under the influence of GSM radiofrequency (mean attenuation of −0.36μV for healthy subjects and −0.6OμV for epileptic patients). Healthy subjects showed a NIOO latency decrease (−5.23ms in mean), which could be consistent with mild, localised heating. The auditory cortical activity in humans was modified by GSM phone radio-frequencies, but an effect on brain functionality has not been proven.

Keywords

Radiofrequencies Auditory evoked potentials Support vector machines COMOBIO project Health 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basseville, M. (1988): ‘Distances en traitement du signal et reconnaissance de formes’ Publication interne 412Google Scholar
  2. Bear, M. F., Connors, B. W., andParadiso, M. A. (1999): ‘Neurosciences, la découverte du cerveau’ (Editions Pradel, 1999)Google Scholar
  3. Boutros, N., Nasrallah, H., Leighty, R., Torello, M., Tueting, P., andOlson, S. (1997): ‘Auditory evoked potentials, clinical vs. research applications’,Psychiatry Res.,69, pp. 183–195CrossRefGoogle Scholar
  4. Burges, R. J. (1998): ‘A tutorial on support vector machines for pattern recognition’,Data Mining Knowledge Discovery,2, pp. 1–47CrossRefGoogle Scholar
  5. Gourevitch, B., andLe Bouquin-Jeannès, R. (2003): ‘K-means clustering method for auditory evoked potentials selection’,Med. Biol. Eng. Comput.,41, pp. 397–402CrossRefGoogle Scholar
  6. Guyon, I., Weston, J., Barnhill, S., andVapnik, V. (2002): ‘Gene selection for cancer classification using support vector machines’,Mach. Learning,46, pp. 389–422MATHCrossRefGoogle Scholar
  7. Jääskeläinen, I. P., Nätänen, R., andSillanaukee, P. (1996): ‘Effect of acute ethanol on auditory and visual event-related potentials: a review and reinterpretation’,Biol. Psychiatry,40, pp. 284–291CrossRefGoogle Scholar
  8. Jarque, C. M., andBera, A. K. (1980): ‘Efficient tests for normality homoscedasticity and serial independence of regression residuals’,Econ. Lett., pp. 255–259Google Scholar
  9. Kotchoubey, B., Schneider, D., Uhlmann, C., Schleichert, H., andBirbaumer, N. (1997): ‘Beyond habituation: long-term repetition effects on visual event-related potentials in epileptic patients’,Electroencephalogr: Clin. Neurophysiol.,103, pp. 450–456CrossRefGoogle Scholar
  10. Laurent, H., andDoncarli, C. (1998): ‘Stationarity index for abrupt changes detection in the time-frequency plane’,IEEE Signal Process. Lett.,5, pp. 43–45CrossRefGoogle Scholar
  11. Maby, E., Chaillou, S., Marquis, P., andLe Bouquin Jeannès, R. (2002): ‘Characterization of auditory evoked potentials recorded in radiofrequency fields’. XI European Signal Processing Conf., Toulouse, FranceGoogle Scholar
  12. Oppenheim, A. V., andSchafer, R. W. (1975): ‘Digital signal processing’ (Prentice Hall, 1975)Google Scholar
  13. Preece, A. W., Iwi, G., Davies-Smith, A., andWesnes, K. (1999): ‘Effect of a 915-MHz simulated mobile phone signal on cognitive function in man’,Int. J. Radiat. Biol.,75, pp. 447–456CrossRefGoogle Scholar
  14. Rogers, R. L., Papanicolaou, A. C., Baumann, S. B., Saydjari, C., andEisenberg, H. M. (1990): ‘Neuromagnetic evidence of a dynamic excitation pattern generating the N100 auditory response’,Electroencephalogr: Clin. Neurophysiol.,77, pp. 237–240CrossRefGoogle Scholar
  15. Rosburg, T., Kreitschmann-Andermahr, I., Nowak, H., andSauer, H. (2000): ‘Habituation of the auditory evoked field component N100m in male patients with schizophrenia,’J. Psychiatric Res.,34, pp. 245–254CrossRefGoogle Scholar
  16. Siegel, S. (1956): ‘Non parametric statistics’ (McGraw-Hill Book Company, New York, 1956)Google Scholar
  17. Soininen, H. S., Karhu, J., Partanen, J., Pääkkönen, A., Jousmäki, V., Hänninen, T.,et al. (1995): ‘Habituation of auditory N100 correlates with amygdaloid volumes and frontal functions in age-associated memory impairment’,Physiol. Behav.,57, pp. 927–935CrossRefGoogle Scholar
  18. Sokolov, E. N. (1977): ‘The detector, the command neuron and plastic convergence’,Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I P Pavlova,27, pp. 691–698Google Scholar
  19. Thompson, R. F., andSpencer, W. A. (1966): ‘Habituation: a model phenomenon for the study of neuronal substrates of behavior’,Psychol. Rev.,73, pp. 16–43CrossRefGoogle Scholar
  20. Vandoolaeghe, E., van Hunsel, F., Nuyten, D., andMaes, M. (1998): ‘Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude’,J. Affect. Disord.,48, pp. 105–113CrossRefGoogle Scholar
  21. Vapnik, V. (1998): ‘Statistical learning theory’ (Wiley, 1998)Google Scholar
  22. Verleger, R., Lefèbre, C., Wieschemeyer, R. andKömpf, D. (1997): ‘Event-related potentials suggest slowing of brain processes in generalized epilepsy and alterations of visual processing in patients with partial seizures’,Data Mining Knowledge Discovery,5, pp. 205–219Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • E. Maby
    • 1
  • R. Le Bouquin Jeannes
    • 1
  • C. Liegeok-Chauvel
    • 2
  • B. Gourevitch
    • 1
  • G. Faucon
    • 1
  1. 1.Laboratoire Traitement du Signal et de l′Image, Inserm U 642Université de Rennes 1RennesFrance
  2. 2.Laboratoire de Neurophysiologie et de Neuropsychologie, Inserm EMI 9926Université de la MéditerranéeMarseilleFrance

Personalised recommendations