Advertisement

Single motor unit analysis from spatially filtered surface electromyogram signals. Part 2: Conduction velocity estimation

  • E. Schulte
  • D. Farina
  • G. Rau
  • R. Merletti
  • C. Disselhorst-Klug
Article

Abstract

The aim of the study was to compare experimentally conduction velocity (CV) estimates obtained with different estimation methods based on surface electromyogram (EMG) signals detected using five spatial filters. The filters investigated were the longitudinal single and double differential, transverse single and double differential, and normal double differential. The same surface EMG signals detected as described in Part 1 were used in this work. CV was estimated with four commonly used delay estimation techniques, i.e. from the distance between the peak values of two waveforms (with and without polynomial interpolation around the peak), and by the maximum likelihood estimate (MLE) based on two or more surface EMG channels. The average standard deviation of CV estimation (for all the MUs and the two muscles together) was 0.61 ms−1 and 0.79 ms−1 for the peak method, with and without interpolation, respectively, and 0.50ms−1 and 0.31 ms−1 for the MLE method, from two and more surface EMG channels, respectively. Moreover, the mean of CV estimates varied by as much as 1 ms−1 depending on the spatial filter used and the method adopted for CV estimation. Considering the dependence on the spatial filter only, the average (over all estimation methods) CV estimates obtained with the five spatial filters were 4.32 ms−1 (normal double differential), 4.23ms−1 (longitudinal double differential), 4.61 ms−1 (transverse double differential), 4.64ms−1 (transverse single differential) and 4.03 ms−1 (longitudinal single differential). It was concluded that the comparison of single MU CV values obtained in different studies is critical if different spatial filters and processing techniques are used for their estimation. Higher estimates of CV were attributed to a smaller reduction in non-travelling signal components and thus were assumed to be positively biased.

Keywords

Surface electromyography Motor unit action potentials Spatial filtering Conduction velocity estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreassen, S., andArendt-Nielsen, L. (1987): ‘Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter’,J. Physiol.,391, pp. 561–571Google Scholar
  2. Brown, T., Galea, V., andMcComas, A. J. (1996): ‘Muscle shortening, response latency, and conduction velocity’,Muscle Nerve,19, pp. 1493–1495Google Scholar
  3. Dimitrov, G. V., andDimitrova, N. A. (1974): ‘Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor’,Electromyogr. Clin. neurophysiol.,14, pp. 423–436Google Scholar
  4. Dimitrova, N. A., Dimitrov, G. V., andLateva, Z. C. (1991): ‘Influence of the fibre length on the power spectrum of single muscle fibre extracellular potentials’,Electromyogr. Clin. Neurophysiol.,31, pp. 387–398Google Scholar
  5. Dimitrova, N. A., Dimitrov, G. V., andNikitin, O. A. (2002): ‘Neither high-pass filtering nor mathematical differentiation of the EMG signals can considerably reduce cross-talk’,J. Electromyogr. Kinesiol.,12, pp. 235–246Google Scholar
  6. Drost, G., Blok, J. H., Stegeman, D. F., van Dijk, J. P., van Engelen, B. G., andZwarts, M. J. (2001): ‘Propagation disturbance of motor unit action potentials during transient paresis in generalized myotonia: a high-density surface EMG study’,Brain,124, pp. 352–360CrossRefGoogle Scholar
  7. Farina, D., Fortunato, E., andMerletti, R. (2000): ‘Non-invasive estimation of motor unit conduction velocity distribution using linear electrode arrays’,IEEE Trans. Biomed. Eng.,41, pp. 380–388Google Scholar
  8. Farina, D., andMerletti, R. (2000): ‘Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions’,J. Electromyogr. Kinesiol.,10, pp. 337–350CrossRefGoogle Scholar
  9. Farina, D., Muhammad, W., Fortunato, E., Meste, O., Merletti, R., andRix, H. (2001): ‘Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays’,Med. Biol. Eng. Comput.,39, pp. 225–236CrossRefGoogle Scholar
  10. Farina, D., Arendt-Nielsen, L., Merletti, R., andGraven-Nielsen, T. (2002a): ‘Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging’,J. Neurosci. Methods,115, pp. 1–12CrossRefGoogle Scholar
  11. Farina, D., Cescon, C., andMerletti, R. (2002b): ‘Influence of anatomical, physical and detection system parameters on surface EMG’,Biol. Cybern.,86, pp. 445–456CrossRefGoogle Scholar
  12. Farina, D., Madeleine, P., Graven-Nielsen, T., Merletti, R., andArendt-Nielsen, L. (2002c): ‘Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle’,Eur. J. Appl. Physiol.,86, pp. 469–478CrossRefGoogle Scholar
  13. Farina, D., Merletti, R., Indino, B., Nazzaro, M., andPozzo, M. (2002d): ‘Cross-talk between knee extensor muscles. Experimental and model results’,Muscle & Nerve,26, pp. 681–695CrossRefGoogle Scholar
  14. Farina, D., Fosci, M., andMerletti, R. (2002e): ‘Motor unit recruitment strategies investigated by surface EMG variables’,J. Appl. Physiol.,92, pp. 235–247Google Scholar
  15. Farina, D., Schulte, E., Merletti, R., Rau, G., andDisselhorst-Klug, C. (2003): ‘Single motor unit analysis from spatially filtered surface electromyogram signals. Part 1: spatial selectivity’,Med. Biol. Eng. & Comput.,41, pp. 330–337Google Scholar
  16. Gantchev, N., Kossev, A., Gydikov, A., andGerasimenko, Y. (1992): ‘Relation between the threshold of recruitment and propagation velocity at isometric voluntary activity’,Electroenceph. Clin. Neurophysiol.,32, pp. 221–228Google Scholar
  17. Gazzoni, M., Farina, D., andMerletti, R. (2001): ‘Motor unit recruitment during constant low force and long duration muscle contractions investigated by surface electromyography’,Acta Physiol. Pharmacol. Bulg.,26, pp. 67–71Google Scholar
  18. Gydikov, A., andKosarov, D. (1972): ‘Volume conduction of the potentials from separate motor units in human muscle’,Electromyogr. Clin. Neurophysiol.,12, pp. 127–147Google Scholar
  19. Gydikov, A., andKosarov, D. (1973): ‘The influence of various factors on the shape of the myopotentials in using monopolar electrodes’,Electromyogr. Clin. Neurophysiol.,13, pp. 319–343Google Scholar
  20. Gydikov, A., Gerilovsky, L., andDimitrov, G. V. (1976): ‘Volume conducted motor unit potentials in human triceps surae’,Electromyogr. Clin. Neurophysiol.,16, pp. 569–586Google Scholar
  21. Gydikov, A., Gerilovski, L., Radicheva, N., andTroyanova, N. (1986): ‘Influence of the muscle fiber end geometry on the extracellular potentials’,Biol. Cybern.,54, pp. 1–8CrossRefGoogle Scholar
  22. Hogrel, J. Y., andDuchêne, J. (1999): ‘A sEMG-based system for clinical applications using laplacian electrodes’. Proc. 4th General SENIAM Workshop, The Netherlands, pp. 172–177Google Scholar
  23. Hogrel, J. Y., Ledoux, I., andDuchêne, J. (2002): ‘Detection of motor unit action potential trains from surface EMG’. Proc. 4th Int. Workshop on Biosignal interpretation, Como, Italy, pp. 67–70Google Scholar
  24. Huppertz, H. J., Disselhorst-Klug, C., Silny, J., Rau, G., andHeimann, G. (1997): ‘Diagnostic yield of noninvasive High-Spatial-Resolution-EMG in Neuromuscular Disease’,Muscle & Nerve,20, pp. 1360–1370CrossRefGoogle Scholar
  25. Johnson, M. A., Polgar, J., Weightman, D., andAppleton, D. (1973): ‘Data on the distribution of fiber types in thirty-six human muscles: an autopsy study’,J. Neurol. Sci.,18, pp. 111–129CrossRefGoogle Scholar
  26. Kleine, B. U., Praamsta, P., Blok, J. H., andStegeman, D. F. (1999): ‘Single motor unit discharge patterns recorded with multichannel sEMG’. Proc. Symp. Muscular disorders in computer users, Copenhagen, pp. 175–179Google Scholar
  27. Kleine, B. U., Praamstra, P., Stegeman, D. F., andZwarts, M. J. (2001): ‘Impaired motor cortical inhibition in Parkinson's disease: motor unit responses to transcranial magnetic stimulation’,Exp. Brain Res.,138, pp. 477–483CrossRefGoogle Scholar
  28. Kossev, A., Gantchev, N., Gydikov, A., Gerasimenko, Y., andChristova, P. (1992): ‘The effect of muscle fiber length change on motor units potentials propagation velocity’,Electromyogr. Clin. Neurophysiol.,32, pp. 287–294Google Scholar
  29. Lo Conte, L., andMerletti, R. (1995): ‘Advances in processing of surface myoelectric signals: Part 2’,Med. Biol. Eng. Comput.,33, pp. 362–372Google Scholar
  30. Masuda, T., Miyano, H., andSadoyama, T. (1985a): ‘A surface electrode array for detecting action potential trains of single motor units’,Electroenceph. Clin. Neurophysiol.,60, pp. 435–443CrossRefGoogle Scholar
  31. Masuda, T., Miyano, H., andSadoyama, T. (1985b): ‘The position of innervation zones in the biceps brachii investigated by surface electromyography’,IEEE Trans. Biomed. Eng.,32, pp. 36–42Google Scholar
  32. Masuda, T., andSadoyama, T. (1986): ‘The propagation of single motor unit action potentials detected by a surface electrode array’,Electroenceph. Clin. Neurophysiol.,63, pp. 590–598CrossRefGoogle Scholar
  33. McGill, K. C., andDorfman, L. J. (1984): ‘High resolution alignment of sampled waveforms’,IEEE Trans. Biomed. Eng.,31, pp. 462–470Google Scholar
  34. Merletti, R., Sabbahi, M., andDe Luca, C. J. (1984): ‘Median frequency of the myoelectric signal: effects of muscle ischemia and cooling’,Eur. J. Appl. Physiol.,52, pp. 258–265CrossRefGoogle Scholar
  35. Merletti, R., andLo Conte, L. (1995): ‘Advances in processin of surface myoelectric signals—Part 1’,Med. Biol. Eng. Comput.,33, pp. 362–372Google Scholar
  36. Morimoto, S. (1986): ‘Effect of length change in muscle fibers on conduction velocity in human motor units’,Jpn. J. Physiol.,36, pp. 773–782Google Scholar
  37. Naeije, M., andZorn, H. (1983): ‘Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique’,Electromyogr. Clin. Neurophysiol.,23, pp. 73–80Google Scholar
  38. Nishizono, H., Kurata, H., andMiyashita, M. (1989): ‘Muscle fiber conduction velocity related to stimulation rate’,Electroenceph. Clin. Neurophysiol.,72, pp. 529–534CrossRefGoogle Scholar
  39. Ramaekers, V. T., Disselhorst-Klug, C., Schneider, J., Silny, J., Forst, J., Forst, R., Kotlarek, F., andRau, G. (1993): ‘Clinical application of a noninvasive multi-electrode array EMG for the recording of single motor unit activity’,Neuropediatrics,24, pp. 134–138Google Scholar
  40. Schneider, J., Rau, G., andSilny, J. (1989): ‘A noninvasive EMG technique for investigating the excitation propagation in single motor units’,Electromyogr. Clin. Neurophysiol.,29, pp. 273–280Google Scholar
  41. Trontelj (1993): ‘Muscle fiber conduction velocity changes with length’,Muscle Nerve,16, pp. 506–512CrossRefGoogle Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • E. Schulte
    • 1
  • D. Farina
    • 2
  • G. Rau
    • 1
  • R. Merletti
    • 2
  • C. Disselhorst-Klug
    • 1
  1. 1.Institute for Biomedical TechnologiesHelmholtz InstituteAachenGermany
  2. 2.Centro di Bioingegneria, Dipartimento di ElettronicaPolitecnico di TorinoTorinoItaly

Personalised recommendations