Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses

  • J. Nyström
  • B. Lindholm-Sethson
  • L. Stenberg
  • S. Ollmar
  • J. W. Eriksson
  • P. Geladi
Article

Abstract

A group of 34 diabetic men, with different degrees of diabetes complications, including skin changes, were studied by near-infrared (NIR) spectroscopy and total body multi-frequency bio-impedance analyses (MFBIA-body). Skin reflectance spectra were measured with a fibre-optic probe in four locations (sites): hand, arm, leg and foot. As control subjects, a group of 23 healthy males were also measured. A combined multivariate analysis of the two types of spectrum was performed. It was concluded that the NIR method has the potential to detect diabetes-related skin conditions and also that the combination of the two techniques provides a higher potential for classification and discrimination of the skin conditions, with correct classification increasing from 63% to 85%.

Keywords

NIR Total body bio-impedance Fibre-optic probe PCA Skin changes Diabetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, N., Ferrell, W., Lochart, J., andLowe, J. (1996): ‘Laser Doppler perfusion imaging of skin blood flow using red and nearinfrared sources’,J. Invest. Dermatol.,107, pp. 882–886Google Scholar
  2. Alberti, K. G. M. M., andZimmet, P. Z. (1998): ‘Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus—Provisional report of a WHO consultation’,Diabetic Med.,15, pp. 539–553Google Scholar
  3. Barnett, A. (1938): ‘The phase angle of normal human skin’,J. Physiol.,93, pp. 349–366Google Scholar
  4. Borssen, B., Bergenheim, T., andLithner, F. (1990): ‘The epidiemiology of foot lesison in diabetic patients aged 15–50 years’,Diabetic Med.,7, pp. 438–444Google Scholar
  5. Buscemi, S., Blunda, G., Maneri, R., andVerga, S. (1998): ‘Bioelectric characteristics of type 1 and type 2 diabetic subjects with reference to body water compartments’,Acta Diabetol.,35, pp. 220–223CrossRefGoogle Scholar
  6. Cornish, B. H., Thomas, B. J., andWard, L. C. (1993): ‘Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis’,Phys. Med. Biol.,38, p. 337CrossRefGoogle Scholar
  7. Corti, P., Ceramelli, G., Dreassi, E., andNjine, M. (1998): ‘Near infrared reflectance spectroscopy in the study of atopy—Part 3. Interactions between the skin and fomblins’,Analyst,123, pp. 2313–2317CrossRefGoogle Scholar
  8. Davey, C. L., andKell, D. B. (1995): ‘The low-frequency dielectric properties of biological cells’, inWaltz, D., Berg, H., andMilazzo, G. (Eds): ‘Bioelectrochemistry of cells and tissues, vol 2: bioelectrochemistry, principles and practice’ (Birkhäuser Verlag, Boston, Berlin, 1995), pp. 159–207Google Scholar
  9. Dempsey, R., Davis, D., Buice, R., andLodder, R. (1996): ‘Biological and medical applications of near-infrared spectrometry’,Analyt. Chem.,50, pp. 18A-34AGoogle Scholar
  10. Dreassi, E., Ceramelli, G., Fabbri, L., Vocioni, F., Bartalini, P., andCorti, P. (1997a): ‘Application of near-infrared reflectance spectrometry in the study of atopy—Part 1. Investigation of skin spectra’,Analyst,122, pp. 767–770Google Scholar
  11. Dreassi, E., Ceramelli, G., Mura, P., Perruccio, P. L., Vocioni, F., Bartalini, P., andCorti, P. (1997b): ‘Near-infrared reflectance spectrometry in the study of atopy—Part 2. Interactions between the skin and polyethylene glycol 400, isopropyl myristate and hydrogel’,Analyst,122, pp. 771–776Google Scholar
  12. Eneroth, M., Larsson, J., andApelqvist, J. (1999): ‘Deep foot infections in patients with diabetes and foot ulcer: an entity with different characteristics, treatments, and prognosis’,J. Diabetes Complicat.,13, pp. 254–63Google Scholar
  13. Foster, K. R., andSchwan, H. P. (1989): ‘Dielectrical properties of tissues and biological materials: a critical review’,Crit. Rev. Biomed. Eng.,17, pp. 25–104Google Scholar
  14. Fricke, H. (1925): ‘The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles’,J. Gen. Physiol.,9, pp. 137–152Google Scholar
  15. Geladi, P., Nyström, J., Eriksson, J. W., Nilsson, A., Lithner, F., andLindholm-Sethson, B. (2000): ‘A multivariate NIR study of skin alterations in diabetic patients as compared to control subjects’,J. Near Infrared Spectrosc.,8, pp. 217–227Google Scholar
  16. Gniadecka, M., Wulf, H. C., Nielsen, O. F., Christensen, D. H., andHercogova, J. (1997a): ‘Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscpy’Photochem. Photobiol.,66, pp. 418–423Google Scholar
  17. Gniadecka, M., Wulf, H. C., Mortensen, N. N., Nielsen, O. F., andChristensen, D. H. (1997b): ‘Diagnosis of basal cell carcinoma by Raman spectroscopy’,J. Raman Spectrosc.,28, pp. 125–129Google Scholar
  18. Gniadecka, M., Nielsen, O. F., Christensen, D. H., andWulf, H. C. (1998): ‘Structure of water, proteins and lipids in intact human skin, hair and nail’,J. Investig. Dermatol.,110, pp. 393–398CrossRefGoogle Scholar
  19. Grimnes, S., andMartinsen, O. G. (2000): ‘Bioimpedance and bioelectricity basics’ (Academic Press, London, San Diego, 2000)Google Scholar
  20. Hanai, T. (1968): ‘Chapter 5’ inScherman, P. (Ed.): ‘Emulsion science’ (Academic Press, New York, 1968)Google Scholar
  21. Heise, H., Bittner, A., andMarbacha, R. (1998): ‘Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring’,J. Near Infrared Spectrosc.,6, pp. 361–374Google Scholar
  22. Heymsfield, S. B., Wang, Z., Visser, M., Gallagher, D., andPierson Jr,R. N. (1996): ‘Techniques used in the measurement of body composition: an overview with emphasis on bioelectrical impedance analysis’,Am. J. Clin. Nutr.,64, pp. 478S-484SGoogle Scholar
  23. Ho, L. T., Kushner, R. F., Shoeller, D. A., Gudivaka, R., andSpiegel, D. M. (1994): ‘Bioimpedance analysis of total body water in hemodialysis patients’,Kidney Int.,46, pp. 1438–1442Google Scholar
  24. Horton, J. W. andvan Ravenswaay, A. (1935): ‘Electrical impedance of the human body’,J. Franklin Inst.,22, pp. 557–572Google Scholar
  25. Ionescu-Tirgoviste, C., Pruna, S., andMincu, I. (1990): ‘Peripheral sympathetic neurolopathy evaluated by recording the evoked electrodermal response using an impedance reactometer’,Diabetes Res. Clin. Pract.,9, pp. 201–209CrossRefGoogle Scholar
  26. Kell, D. B. andDavey, C. L. (1990): ‘Conductimetric and impedimetric devices’, inCass, A. E. G. (Ed.): ‘Conductimetric and impedimetric devices in biosensors, a practical approach’ (Oxford University Press, 1990), pp. 125–154Google Scholar
  27. Kumar, G., andSchmitt, J. (1997): ‘Optimal probe geometry for near-infrared spectroscopy of biological tissue’,Appl. Opti.,36, pp. 2286–2293Google Scholar
  28. Larsson, J., Apelqvist, J., Agardh, C. D., andStenström, A. (1995): ‘Decreasing incidence of major amputation in diabetic patients-a consequency of a multidisciplinary foot care team approach’,Diabetic Med.,12, pp. 770–776Google Scholar
  29. Lindholm-Sethson, B., Han, S., Ollmar, S., Nicander, I., Jonsson, G., Lithner, F., Bertheim, U., andGeladi, P. (1998): ‘Multivariate analysis of skin impedance data in long-term type 1 diabetic patients’,Chemometr. Intell. Lab. Syst.,44, pp. 381–394Google Scholar
  30. Lukaski, H. C. (1987): ‘Methods for the assessment of human body composition: traditional and new’,Am. J. Clin. Nutr.,46, pp. 537–556Google Scholar
  31. Monnier, V. M., Bautista, O., Kenny, D., Sell, D. R., Fogarty, J., Dahms, W., Cleary, P. A., Lachin, J., andGenuth, S. (1999): ‘Skin collagen glycation, glycoxidation and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes’,Diabetes,48, p. 870Google Scholar
  32. Osborne, B. G., Fearn, T., andHindle, P. (1993): ‘Practical NIR spectroscopy with applications to food and beverage analysis’, 2nd edn (Longman Scientific & Technical, Harlow, 1993), p. 204.Google Scholar
  33. Pruna, S., Ionescu-Tirgoviste, G., andBajenaru, O. (1987): ‘Evaluation in autonomic diabetic neuropathy using a dual-channel self-balancing impedance reactometer preliminary study’,Rev. Roum. Med.—Med. Int.,25, pp. 125–133Google Scholar
  34. Pruna, S., andIonescu-Tirgoviste, C. (1987): ‘Dual-channel selfbalancing electrodermal’Med. Biol. Eng. Comput.,25, pp. 613–619Google Scholar
  35. Rattfelt, J., Nyström, J., Lindholm-Sethson, B., andGeladi, P. (2002): ‘A multivariate NIR and skin impedance study on skin changes as an effect of the menstrual cycle’. 12th Nordic Baltic Conf. on Biomedical engineering and medical physics in Reykjavik, IslandGoogle Scholar
  36. Schwan, H. P. (1957): ‘Electrical properties of tissue and cell suspensions’ (Academic Press, New York, 1957)Google Scholar
  37. Stranc, M. F., Sowa, M. G., Abdulrauf, B., andMantsch, H. H. (1998). ‘Assessment of tissue viability using near-infrared spectroscopy’,Br. J. Plastic Surg.,51, pp. 210–217CrossRefGoogle Scholar
  38. van Loan, M. D., Kopp, L. E., King, J. C., Wong, W. W., andMayclin, P. L. (1995): ‘Fluid changes during pregnancy: use of bioimpedance spectroscopy’,J. Appl. Physiol.,78, pp. 1037–1042Google Scholar
  39. Visser, M., Deurenberg, P., andvan Staveren, W. A. (1995): ‘Multifrequency bioelectrical impedance for assessing total body water and extracellular water in elderly subjects’,Eur. J. Clin. Nutr.,49, pp. 256–266Google Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • J. Nyström
    • 1
    • 2
  • B. Lindholm-Sethson
    • 1
    • 2
  • L. Stenberg
    • 1
  • S. Ollmar
    • 3
  • J. W. Eriksson
    • 4
  • P. Geladi
    • 5
  1. 1.Department of ChemistryUme⇘ UniversityUme⇘Sweden
  2. 2.Center for Biomedical Engineering and PhysicsUme⇘ UniversityUme⇘Sweden
  3. 3.Division of Medical EngineeringKarolinska InstitutetHuddingeSweden
  4. 4.Department of MedicineUme⇘ University HospitalUme⇘Sweden
  5. 5.The Unit of Biomass Technology & ChemistrySwedish University of Agricultural SciencesUme⇘Sweden

Personalised recommendations