Critical review of non-invasive respiratory monitoring in medical care

  • M. FolkeEmail author
  • L. Cernerud
  • M. Ekström
  • B. Hök


Respiratory failure can be difficult to predict. It can develop into a life-threatening condition in just a few minutes, or it can build up more slowly. Thus continuous monitoring of respiratory activity should be mandatory in clinical, high-risk situations, and appropriate monitoring equipment could be life-saving. The review considers non-invasive methods and devices claimed to provide information about respiratory rate or depth, or gas exchange. Methods are categorised into those responding to movement, volume and tissue composition detection; air flow; and blood gas concentration. The merits and limitations of the methods and devices are analysed, considering information content and their ability to minimise the rate of false alarms and false non-alarms. It is concluded that the field of non-invasive respiratory monitoring is still in an exploratory phase, with numerous reports on specific device solutions but less work on evaluation and adaptation to clinical requirements. Convincing evidence of the clinical usefulness of respiratory monitors is still lacking. Devices responding only to respiratory rate, and lacking information about actual gas exchange, will have limited clinical value. Furthermore, enhancement in specificity and sensitivity to avoid false alarms and non-alarms will be necessary to meet clinical requirements. Miniature CO2 sensors are identified as one route towards substantial improvement.


Respiratory monitoring Movement Volume and tissue composition detection Respiratory flow sensors Blood gas sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, R. D., Holmes, E. L., andNyboer, J. (1964): ‘Volumetric dynamics of respiration as measured by electrical impedance plethysmography’,J. Appl. Physiol.,19, pp. 166–173Google Scholar
  2. Ashutosh, K., Gilbert, R., Auchincloss, J. H., Erlebacher, J., andPeppi, D. (1974): ‘Impedance pnemograph and magnetometer methods for monitoring tidal volume’,J. Appl. Physiol.,37, pp. 964–966Google Scholar
  3. Askanazi, J., Silverberg, P. A., Foster, R. J., Hyman, A. I., Milic-Emili, J., andKinney, J. M. (1980): ‘Effects of respiratory apparatus on breathing pattern’,J. Appl. Physiol.,48, pp. 577–580Google Scholar
  4. Barrow, R. E., Vorwald, A. J., andDomeier, E. (1969): ‘Capacitance respirometry’,Arch. Environ. Health,19, pp. 579–585Google Scholar
  5. Barschdorff, D., andZhang, W. (1994): ‘Respiratory rhythm detection with photoplethysmographic methods’,IEEE, pp. 912–913Google Scholar
  6. Bennett, A. D. (2002): ‘Home apnoea monitoring for infants. A discussion of primary care issues’,Adv. Nurse Pract.,10, pp. 48–53zbMATHGoogle Scholar
  7. Bierman, M. I. (1995): ‘Respiratory monitoring’, inDantzkner, D. R., MacIntyre, N. R., andBakow, E. D. (Eds): ‘Comprehensive respiratory care’ (WB Saunders Company, Philadelphia, 1995), pp. 243–264Google Scholar
  8. Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., andHose, D. R. (1999a): ‘Medical physics and biomedical engineering’ (Institute of Physics Publishing, London, 1999), pp. 556–558Google Scholar
  9. Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., andHose, D. R. (1999b): ‘Medical physics and biomedical engineering’ (Institute of Physics Publishing, London, 1999), pp. 567–569Google Scholar
  10. Burdett-Smith, P. (1997): ‘Always check the respiratory rate’,Br. Med. J.,314, p. 1549Google Scholar
  11. Cohen, K. P., Ladd, W. M., Beams, D. M., Sheers, W. S., Radwin, R. G., Tompkins, W. J., andWebster, J. G. (1997): ‘Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction’,IEEE Trans. Biomed. Eng.,44, pp. 555–566CrossRefGoogle Scholar
  12. Cop, W. (1988): ‘Methods devices used in ventilatory monitoring’,Encyl. Med. Dev. Instrum.,4, pp. 2870–2877Google Scholar
  13. Coté, C. J., Rolf, N., Liu, L. M. P., Goudsouzian, N. G., Ryan, J. F., Zaslavsky, A., Gore, R., Todres, D., Vassallo, S., Polaner, D., andAlifimoff, J. K. (1991): ‘A single-blind study of combined pulse oximetry and capnography in children’,Anesthesiology,74, pp. 980–987Google Scholar
  14. Cyna, A. M., Kulkarni, V., Tunstall, M. E., Hutchison, J. M. S., andMallard, J. R. (1991): ‘Aura: A new respiratory monitor and apnoea alarm for spontaneously breathing patients’,Br. J. Anaesth.,67, pp. 341–345Google Scholar
  15. Davies, A., Blakeley, A. G. H., andKidd, C. (2001): ‘Human physiology: The respiratory system’ (Churchill Livingstone, Edinburgh, 2001), pp. 647–706Google Scholar
  16. Davis, C., Mazzolini, A., andMurphy, D. (1997): ‘A new fibre optic sensor for respiratory monitoring’,Austral. Phys. Eng. Sci. Med.,20, pp. 214–219Google Scholar
  17. Dodds, D., Purdy, J., andMoulton, D. (1999): ‘The PEP transducer: a new way of measuring respiratory rate in the nonintubated patient’,J. Accid. Emerg. Med.,16, pp. 26–28Google Scholar
  18. Drummond, G. B., Nimmo, A. F., andElton, R. A. (1996): ‘Thoracic impedance used for measuring chest wall movement in postoperative patients’,Br. J. Anaesth.,77, pp. 327–332Google Scholar
  19. Eriksson, I., Berggren, L., andHallgren, S. (1986): ‘CO2 production and breathing pattern during invasive and non-invasive respiratory monitoring’,Acta Anaesthesiologica Scandinavica,30, pp. 438–443Google Scholar
  20. Folke, M., Granstedt, F., Hök, B. andScheer, H. (2002): ‘Comparative provocation test of respiratory monitoring methods’,J. Clin. Monit.,17, pp. 97–103Google Scholar
  21. Franks, C. I., Brown, B. H., andJohnston, D. M. (1976): ‘Contactless respiration monitoring of infants’,Med. Biol. Eng.,May, pp. 306–311Google Scholar
  22. Friesen, R. H., andAlswang, M. (1996): ‘End-tidal PCO2 monitoring via nasal cannulae in pediatric patients: Accuracy and sources of error’,J. Clin. Monit.,12, pp. 155–159CrossRefGoogle Scholar
  23. Galland, B. C., Taylor, B. J., andBolton, D. P. (2002): ‘Prone versus supine sleep position: a review of the physiological studies in SIDS research’,J. Paediatr. Child Health,38, pp. 332–338CrossRefGoogle Scholar
  24. Gilbert, R., Auchincloss, J. H., Brodsky, J., andBoden, W. (1972): ‘Changes in tidal volume, frequency, and ventilation induced by their measurement’,J. Appl. Physiol.,33, pp. 252–254Google Scholar
  25. Gill, N. P., Wright, B., andReilly, C. S. (1992): ‘Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period’,Br. J. Anaesth.,68, pp. 471–473Google Scholar
  26. Gordh, T., Rawal, N., Ström, S., andHök, B. (1995): ‘Respiratory monitoring during postoperative analgesia’,J. Clin. Monit.,11, pp. 365–372CrossRefGoogle Scholar
  27. Gordon, D. H., andThompson, W. L. (1975): ‘A new technique for monitoring spontaneous respiration’,Med. Instrum.,9, pp. 21–22Google Scholar
  28. Granstedt, F., Hök, B., Bjurman, U., Ekström, M., andBacklund, Y. (2001): ‘New CO2 sensor with high resolution and fast response’,IEEE-EMBC, Istanbul, TurkeyGoogle Scholar
  29. Hamilton, L. H., Beard, J. D., Carmean, R. E., andKory, R. C. (1967): ‘An electrical impedance ventilometer to quantitate tidal volume and ventilation’,Med. Res. Eng.,6, pp. 11–16Google Scholar
  30. Hoffman, S., Jedeikin, R., andAtlas, D. (1986): ‘Respiratory monitoring with a new impedance plethysmograph’,Anaesthesia,41, pp. 1139–1142Google Scholar
  31. Hök, B., Wiklund, L., andHenneberg, S. (1993): ‘A new respiratory rate monitor: development and initial clinical experience’,Int. J. Clin. Monit. Comput.,10, pp. 101–107CrossRefGoogle Scholar
  32. Johansson, A., andÖberg, P. Å. (1999a): ‘Estimation of respiratory volumes from the photoplethysmographic signal Part I: experimental results’,Med. Biol. Eng. Comput.,37, pp. 42–47Google Scholar
  33. Johansson, A., andÖberg, P. Å. (1999b): ‘Estimation of respiratory volumes from the photoplethysmographic signal Part II: a model study’,Med. Biol. Eng. Comput.,37, pp. 48–53Google Scholar
  34. Jones, J. G., Sapsford, D. J., andWheatley, R. G. (1990): ‘Postoperative hypoxemia: mechanisms and time course’,Anaesthesia,45, pp. 566–573Google Scholar
  35. Jopling, M. W., Manheimer, P. D., andBebout, D. E. (2000): ‘Effects of severe motion on three pulse oximeters designed for use in motion’,Int. J. Intens. Care, pp. 177–179Google Scholar
  36. Kavanagh, B. P., Sandler, A. N., Turner, K. E., Wick, V., andLawson, S. (1992): ‘Use of end-tidal PCO2 and transcutaneous PCO2 as noninvasive measurement of arterial PCO2 in extubated patients recovering from general anesthesia’,J. Clin. Monit.,8, pp. 226–230CrossRefGoogle Scholar
  37. Kehlet, H., andRosenberg, J. (1995): ‘Late post-operative hypoxaemia and organ dysfunction’,Eur. J. Anaesth.,12, pp. 31–34Google Scholar
  38. Larsson, C., Davidsson, L., Lundin, P., Gustafsson, G., andVegfors, M. (1999): ‘Respiratory monitoring during MR imaging’,Acta Radiologica,40, pp. 33–36Google Scholar
  39. Larsson, C., andStaun, P. (1999): ‘Evaluation of a new fibre-optic monitor for respiratory rate monitoring’,J. Clin. Monit. Comput.,15, pp. 295–298CrossRefGoogle Scholar
  40. Lenz, G., Heipertz, W., andEpple, E. (1991): ‘Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients’,J. Clin. Monit.,7, pp. 245–248CrossRefGoogle Scholar
  41. Levene, M. I., Tudehope, D. I., andThearle, M. J. (2000): ‘Essentials of neonatal medicine. Respiratory physiology, respiratory failure and mechanical ventilation’ (Blackwell Science Ltd, Oxford, 2000), pp. 115–125Google Scholar
  42. Lin, J. C. (1975): ‘Noninvasive microwave measurement of respiration’,Proc. IEEE, p. 1430Google Scholar
  43. Lindberg, L.-G., Ugnell, H., andÖberg, P. Å. (1992): ‘Monitoring of respiratory and heart rates using a fibre-optic sensor’,Med. Biol. Eng. Comput.,30, pp. 533–537Google Scholar
  44. Linko, K., andPaloheimo, M. (1989): ‘Monitoring of the inspired and end-tidal oxygen, carbon dioxide, and nitrous oxide concentrations: Clinical applications during anesthesia and recovery’,J. Clin. Monit.,5, pp. 149–156CrossRefGoogle Scholar
  45. Loughnan, T. E., Monagle, J., Copland, J. M., Ranjan, P., andChen, M. F. (2000): ‘A comparison of carbon dioxide monitoring and oxygenation between facemask and divided nasal cannula’,Anaesth. Intens. Care,28, pp. 151–154Google Scholar
  46. Nagler, J. (2002): ‘Sudden infant death syndrome’,Curr. Opin. Pediatr.,14, pp. 247–250Google Scholar
  47. Nakajima, K., Tamura, T., andMilke, H. (1996): ‘Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering techniques’,Med. Eng. Phys.,18, pp. 365–372CrossRefGoogle Scholar
  48. Nilsson, L., Johansson, A., andKalman, S. (2000): ‘Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique’,J. Clin. Monit. Comput.,16, pp. 309–315CrossRefGoogle Scholar
  49. Perez, W., andTobin, M. J. (1985): ‘Separation of factors responsible for change in breathing pattern induced by instrumentation’,J. Appl. Physiol.,59, pp. 1515–1520Google Scholar
  50. Rolfe, P. (1971): ‘A magnetometer respiration for use with premature babies’,Bio-med. Eng.,September, pp. 402–404Google Scholar
  51. Rodate, J. R., andShardonofsky, F. R. (2000): ‘Respiratory system mechanics’ inMurray, J. F., Nadel, J. A., Mason, R. J., andBoushey, H. A. (Eds): ‘Textbook of respiratory medicine’ (WB Saunders Company, Philadelphia, 2000), pp. 91–118Google Scholar
  52. Rosenberg, J., Pedersen, M. H., Ramsing, T., andKehlet, H. (1992): ‘Circadian variation in unexpected postoperative death’,Br. J. Surg.,79, pp. 1300–1302Google Scholar
  53. Roy, J., McNulty, S. E., andTorjman, M. C. (1991): ‘An improved nasal prong apparatus for end-tidal carbon dioxide monitoring in awake, sedated patients’,J. Clin. Monit.,7, pp. 249–252CrossRefGoogle Scholar
  54. Sage, J., andGough, W. (1998): ‘A simple inexpensive device for monitoring patient respiration’,Med. Biol. Eng. Comput.,36, pp. 231–232Google Scholar
  55. Santos, L. J., Varon, J., Pic-Aluas, L., andCombs, A. H. (1994): ‘Practical uses of end-tidal carbon dioxide monitoring in the emergency department’,J. Emerg. Med.,12, pp. 633–644CrossRefGoogle Scholar
  56. Semmes, B. J., Tobin, M. J., Snyder, J. V., andGrenvik, A. (1985): ‘Subjective and objective measurement of tidal volume in critically ill patients’,Chest,78, pp. 577–579Google Scholar
  57. Severinghaus, J. W. (1987): ‘History, status and future of pulse oximetry’,Adv. Exper. Med. Biol.,220, pp. 3–8Google Scholar
  58. Siivola, J. (1989): ‘New noninvasive piezoelectric transducer for recording of respiration, heart rate and body movements’,Med. Biol. Eng. Comput.,27, pp. 423–424Google Scholar
  59. Sullivan, F. M., andBarlow, S. M. (2001): ‘Review of risk factors for sudden infant death syndrome’,Paediatr. Perinat. Epidemiol.,15, pp. 144–200CrossRefGoogle Scholar
  60. Tatara, T., andTsuzaki, K. (1997): ‘An apnea monitor using a rapid-response hygometer’,J. Clin. Monit.,13, pp. 5–9Google Scholar
  61. Tobin, M. J. (1988): ‘Respiratory monitoring in the intensive care unit’,Am. Rev. Respir. Dis.,138, pp. 1625–1642Google Scholar
  62. Vegfors, M., Ugnell, H., Hök, B., Öberg, P. Å., andLennmarken, C. (1993): ‘Experimental evaluation of two new sensors for respiratory rate monitoring’,Physiol. Meas.,14, pp. 171–181CrossRefGoogle Scholar
  63. Vegfors, M., Lindberg, L.-G., Pettersson, H., andÖberg, P. Å. (1994): ‘Presentation and evaluation of a new optical sensor for respiratory rate monitoring’,Int. J. Clin. Monit. Comput.,11, pp. 151–156CrossRefGoogle Scholar
  64. Waag-Carlson, B., Neelon, V. J., andHsiao, H. (1999): ‘Evaluation of a non-invasive respiratory monitoring system for sleeping subjects’,Physiol. Meas.,20, pp. 53–63Google Scholar
  65. Ward, K. R., andYealy, D. M. (1998): ‘End-tidal carbon dioxide monitoring in emergency medicine, Part 1: basic principles’,Acad. Emerg. Med.,5, pp. 628–636Google Scholar
  66. Wiedemann, H. P., andMcCarthy, K. (1989): ‘Noninvasive monitoring of oxygen and carbon dioxide’,Clin. Chest. Med.,10, pp. 239–254Google Scholar
  67. Wiklund, L., Hök, B., Ståhl, K., andJordeby-Jönsson, A. (1994): ‘Postanesthesia monitoring revisited: frequency of true and false alarms from different monitoring devices’,J. Clin. Anesth.,6, pp. 182–188Google Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  1. 1.Department of Electrical EngineeringMälardalen UniversityVästeråsSweden
  2. 2.Department of Caring & Public Health SciencesMälardalen UniversityVästeråsSweden
  3. 3.Hök Instrument ABVästeråsSweden

Personalised recommendations