3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis

  • A. Laib
  • O. Barou
  • L. Vico
  • M. H. Lafage-Proust
  • C. Alexandre
  • P. Rügsegger


Bone mass and microarchitecture are the main determinants of bone strength. Three-dimensional micro-computed tomogrpahy has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. In the presented work, the proximal part of the tibiae of hindlimb unloaded and control rats were measured with 3D MicroCT, and the secondary spongiosa of the scanned region was evaluated using direct evaluation techniques that do not require model assumptions. For determination of the complete bone status, the cortex of the tibiae was evaluated and characterised by its thickness. It is shown that with the proposed anatomically conforming volume of interest (VOI), up to an eight-fold volume increase can be evaluated compared to cubic or spherical VOIs. A pronounced trabecular bone loss of −50% is seen after 23 days of tail suspension. With the new evaluation techniques, it is shown that most of this bone loss is caused by the thinning of trabeculae, and to a lesser extent by a decrease in their number. What changes most radically is the structure type: the remaining bone is more rod-like than the control group's bone. Cortical bone decreases less than trabecular bone, with only −18% after 23 days.


Computed tomography (CT) Micro CT Bone microarchitecture Rat tibia Osteoporosis Morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkenhäger-Frenkel, D. H., Coupron, P., Hüpscher, E. A., Clermonts, E., Coutinho, M. F., Schmitz, P. I. M., andMeunier, P. J. (1988): ‘Age-related changes in cancellous bone structure a two-dimensional study in the transiliac iliac crest biopsy sites’,Bone Min.,4, pp. 197–216Google Scholar
  2. Bonse, U., Busch, F., Günnewig, O., Beckmann, F., Pahl, R., Deeling, G., Hahn, M., andGraeff, W. (1994): ‘3D computed X-ray tomography of human cancellous bone at 8 μm spatial and 10−4 energy resolution,Bone Min.,25, pp. 25–38Google Scholar
  3. Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., andKleerekoper, M. (1989): ‘The direct examination of three-dimensional bone architecture in vitro by computed tomography’,J. Bone Min. Res.,4, pp. 3–11Google Scholar
  4. Goulet, R. W., Goldstein, S. A., Ciarelli, M. J., Kuhn, J. L., Brown, M. B., andFeldkamp, L.A. (1994): ‘The relationship between the structural and orthogonal compressive properties of trabecular bone.J. Biomech.,27, pp. 375–389Google Scholar
  5. Harrigan, T. P., andMann, R. W. (1994): ‘Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor’,J. Mater. Sci.,19, pp. 761–767Google Scholar
  6. Hildebrand, T., andRügsegger, P. (1997a): ‘A new method for the model independent assessment of thickness in three-dimensional images’,J. Microsc.,185, pp. 67–75CrossRefGoogle Scholar
  7. Hildebrand, T., andRügsegger, P. (1997b): ‘Quantification of bone microarchitecture with the structure model index’,Comput. Meth. Biomech. Biomed. Eng.,1, pp. 15–23Google Scholar
  8. Hildebrand, T., Laib, A., Ulrich, D., Kohlbrenner, A., andRügsegger, P. (1977c): ‘Bone structure as revealed by microtomography’,Proc. SPIE,3149, pp. 34–43Google Scholar
  9. Hil'debrand, T., Laib, A., Müller, R., Dequeker, J., andRügsegger, P. (1999): ‘Direct 3D morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest; and calcaneus’,J. Bone Miner: Res.,14, 1167–1174Google Scholar
  10. Hipe, J.-A., Jansujwicz, A., Simmons, C. A., andSnyder, B. (1996): Trabecular bone morphology from micro-magnetic resonance imaging’,J. Bone. Miner. Res.,11, pp. 286–297Google Scholar
  11. Kapadia, R. D., Stroup, G. B., Badger, A. M., Koller, B., Levin, J. M., Coatney, R. W., Dodds, R. A., Liang, X., Lark, M. W., andGowen, M. (1998): ‘Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis’,Technol. Health Care,6, pp. 361–372Google Scholar
  12. Kleerekoper, M., Villanueva, A. R., Stanciu, J., Rao, D. S., andParfitt, A. M. (1985): ‘The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures’,Calcif. Tissue Int.,37, pp. 594–597Google Scholar
  13. Kinney, J. H., andNichols, M. C. (1992): ‘X-ray tomographic microscopy (XTM) using synchrotron radiation’,Annu. Rev. Mater. Sci.,22, pp. 121–152Google Scholar
  14. Kinney, J. H., Ryaby, J. T., Haupt, D. L., andLane, N. E. (1998): ‘Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis’,Technol. Health Care,6, pp. 339–350Google Scholar
  15. Kohlbrenner, A., Hämmerle, S., Laib, A., Koller, B., andRügsegger, P. (1999): ‘Fast 3D multiple fan-beam CT systems’,Proc. SPIE,3772, pp. 44–54Google Scholar
  16. Li, X. J., Jee, W. S. S., Chow, S-Y., andWoodbury, D. M. (1990): ‘Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study’,Anat. Rec.,227 pp. 12–24CrossRefGoogle Scholar
  17. Lorensen, W. E., andCline, H. E. (1987): ‘Marching Cubes: A high resolution 3D surface construction algorithm’,Comput. Graphics,21, pp. 163–169Google Scholar
  18. Maeda, H., Kimmel, D. B., Raab, D. M., andLane, N. E. (1993): ‘Musculoskeletal recovery following hindlimb immobilization in adult female rats,Bone,14, pp. 153–159CrossRefGoogle Scholar
  19. Majumdar, S., Newitt, D., Mathur, A., Osman, D., Gies, A., Chiu, E., Lotz, J., Kinney, J., andGenant, H. (1996): ‘Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with x-ray tomographic microscopy and biomechanics,’ Osteoporosis Int.,6, pp. 376–385CrossRefGoogle Scholar
  20. Morey, E. R. (1979): ‘Spaceflight and bone turnover correlation with a new model of weightlessness’,Bio. Sci.,29, pp. 168–172Google Scholar
  21. Mosekilde, L. (1995): ‘Asessing bone quality—animal models in preclinical osteoporosis research,Bone,17, pp. 345S-352SCrossRefGoogle Scholar
  22. Münch, B. (1991): ‘3D-Analyse von Knietomogrammen’. Diss. ETH Zuerich Nr. 9459Google Scholar
  23. Odgaard, A., andGundersen, H. J. G. (1993): ‘Quantification of connectivity in cancellous bone, with special emphasis on 3D reconstructions’,Bone,14, pp. 173–182CrossRefGoogle Scholar
  24. Odgaard, A. (1997): ‘Three-dimensional methods for quantification of cancellous bone architecture’,Bone,20, pp. 315–328CrossRefGoogle Scholar
  25. Parfitt, A. M., Mathews, C. H. E., Villanueva, A. R., Kleerekoper, M., Frame, B., andRao, D. S. (1983): ‘Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis’,Calcif. Tissue Int.,72, pp. 1396–1409Google Scholar
  26. Parfitt, A. M. (1992): ‘Implications of architecture for the pathogenesis and prevention of vertebral fracture’,Bone,13, pp. S41-S47Google Scholar
  27. Peyrin, F., Salome, M., Cloetens, A. M., Laval-Jeantet, A. M., Ritman, E., andRügsegger, P. (1998): ‘Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level’,Technol. Health Care.,6, pp. 391–401Google Scholar
  28. Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., Muhs, J. M., Cedel, S. L., andMelton, J. M. (1990): ‘Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis’,New Engl. J. Med.,332, pp. 802–809Google Scholar
  29. Rügsegger, P. (1996a): ‘Bone density measurement’ in Bröll, H., and Dambacher, M. A., (Eds): ‘Osteoporosis: A guide to diagnosis and treatment. Rheumatology’. Basel, Karger,18, pp. 103–116Google Scholar
  30. Rügsegger, P., Koller, B., andMüller, R. (1996b): ‘A microtomographic system for the non-destructive evaluation of bone architecture’,Calcif. Tissue Int.,58, pp. 24–29Google Scholar
  31. Simmons, C. A. andHipp, J. A. (1997): ‘Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone’,J. Bone Miner: Res.,12, pp. 942–947Google Scholar
  32. Snyder, B. D., Piazza, S., Edwards, W. T., andHayes, W. C. (1993): ‘Role of trabecular morphology in the etiology of agerelated vertebral fractures’,Calcif. Tissue Int.,53, pp. S14-S22CrossRefGoogle Scholar
  33. Turner, C. H., Rho, J. Y., Ashman, R. B., andCowin, S. C. (1988): ‘The dependence of elastic constants of cancellous bone upon structural density and fabric’,Trans. Orthopaed. Res. Soc.,13, pp. 74Google Scholar
  34. Ulrich, D., Van Rietbergen, B., Laib, A., andRügsegger, P. (1999): ‘The ability of 3D structural indices to reflect mechanical aspects of trabecular bone,Bone.,25, pp. 55–60CrossRefGoogle Scholar
  35. Van Rietbergen, B., Majumdar, S., Pistoia, W., Newitt, D. C., Kothari, M., Laib, A., andRügsegger, P. (1998): ‘Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images’,Technol. Health Care.,6, pp. 413–420Google Scholar
  36. Whitehouse, W.J. (1974): ‘The quantitative morphology of anisotropic trabecular bone’,J. Microsc.,101, pp. 153–168Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  • A. Laib
    • 1
  • O. Barou
    • 2
  • L. Vico
    • 2
  • M. H. Lafage-Proust
    • 2
  • C. Alexandre
    • 2
  • P. Rügsegger
    • 1
  1. 1.Institute for Biomedical EngineeringUniversity of Zürich and Swiss Federal Institute of Technology (ETH)ZürichSwitzerland
  2. 2.Laboratory of Bone Biology and BiochemistrySaint-Etienne UniversitySaint-EtienneFrance

Personalised recommendations