Advertisement

Journal of Plant Research

, Volume 106, Issue 4, pp 327–335 | Cite as

Silicon-accumulating idioblasts in leaves of Cecropiaceae (Urticales)

  • Hiroaki Setoguchi
  • Hiroshi Tobe
  • Hideaki Ohba
  • Megumi Okazaki
Original Articles

Abstract

A survey of the structure and mineral composition of leaf idioblasts in the Cecropiaceae was conducted. In all six genera of the family, idioblasts usually occur as trichomes or enlarged epidermal cells and nearly always accumulate Si, in marked contrast to the idioblasts of other members of the Urticales, which mostly possess cystoliths containing abundant Ca and Si. The horizontally elongate, mineralized structures ofPoikilospermum, reported formerly as “cystoliths” also contain mainly Si and little Ca. Six genera of Cecropiaceae share a common character in accumulating abundant Si in idioblasts of the leaf epidermis, while lacking cystoliths composed of abundant Ca and Si.

Key words

Cecropiaceae Epidermis Idioblast Silicon accumulation Urticales 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajello, L. 1941. Cytology and cellular interrelationships of cystolith formation inFicus elastica. Amer. J. Bot.28: 589–594.Google Scholar
  2. Arnott, H.J. 1980. Carbonates in higher plants.In M. Omori and N. Watabe, eds., Mechanisms of Biomineralization in Animals and Plants. Tokai University Press, Tokyo, pp. 211–218.Google Scholar
  3. Bentham, G. and Hooker, J.D. 1880. Genera Plantarum 3 (1), London, pp. 341–395.Google Scholar
  4. Berg, C.C. 1978. Cecropiaceae a new family of the Urticales. Taxon27: 39–44.Google Scholar
  5. Berg, C.C. 1989. Systematics and phylogeny of Urticales.In P.R. Crane and S. Blackmore eds., Evolution, Systematics, and Fossil History of Hamamelidae, vol. 2., Clarendon Press, Oxford, pp. 193–220.Google Scholar
  6. Chew, W.-L. 1963. A revision of the genusPoikilospermum (Urticaceae). Gard. Bull. Singapore19: 1–104.Google Scholar
  7. Corner, E.J.H. 1962. The classification of Moraceae. Gard. Bull Singapore19: 187–252.Google Scholar
  8. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University, New York.Google Scholar
  9. Cronquist, A. 1988. The evolution and classification of flowering plants. 2nd ed. The New York Botanical Garden, New York.Google Scholar
  10. Dahlgren, G. 1989. The last Dahlgrenogram. System of classification of the Dicotyledons.In Kit Tan ed., Plant taxonomy, Phytogeography and related subjects, The Davis & Hedge Festschrift, Edinburgh University, Edinburgh, pp. 249–260.Google Scholar
  11. Engler, A. 1894. Moraceae.In A. Engler and K. Plantl ed., Die naturlichen Pflanzenfamilien. vol. 3(l). Engelmann, Leipzig.Google Scholar
  12. Heywood, V.H. 1978. Flowering plants of the world. Oxford University Press, Oxford.Google Scholar
  13. Hiltz, P. 1949. Note Préliminaire sur la cytologie des cellules à cystolithes deFicus elastica. Etude du systeme vacuolaire. C. R. Acad. Sci.228: 194–196.Google Scholar
  14. Mabberley, D.J. 1987. The Plant-Book. A portable dictionary of the higher plants. Cambridge University, Cambridge.Google Scholar
  15. Metcalfe, C.R. andChalk, L. 1950. Anatomy of the Dicotyledons. 2 vols. Clarendon Press, Oxford.Google Scholar
  16. Okazaki, M., Setoguchi, H., Aoki, H. andSuga, S. 1986. Application of soft X-ray microradiography to observation of cystoliths in the leaves of various higher plants. Bot. Mag. Tokyo99: 281–287.Google Scholar
  17. Okazaki, M., Setoguchi, H. andHisanaga, E. 1991. Inorganic composition and crystallographic nature of isolated cystoliths from leaves of higher plants.In S. Suga and H. Nakahara eds., Evolution and Phylogeny of Biomineralization (Proceedings of International Biomineralization Symposium, at Odawara, 1990). Springer-Verlag, Tokyo, pp. 173–177.Google Scholar
  18. Renner, O. 1907. Beiträge zur Anatomie und Systematik der Artocarpeen und Conocephaleen, insbesondere der GattungFicus. Bot. Jahrb.39: 319–448.Google Scholar
  19. Satake, Y. 1929a. Systematic importance of spodograms of leaves in the Urticales (I). Bot. Mag. Tokyo42: 206–217 (In Japanese).Google Scholar
  20. Satake, Y. 1929b. Systematic importance of spodograms of leaves in the Urticales (II). Bot. Mag. Tokyo42: 413–421 (In Japanese).Google Scholar
  21. Satake, Y. 1930. Systematic importance of spodograms of leaves in the Urticales (III). Bot. Mag. Tokyo43: 113–120 (In Japanese).Google Scholar
  22. Satake, Y. 1931. Systematic and anatomical studies on some Japanese plants I. Systematic importance of spodograms in the Urticales. J. Fac. Sci. Tokyo Univ.3: 485–507.Google Scholar
  23. Setoguchi, H., Okazaki, M. andSuga, S. 1990. Calcification in higher plants with special reference to cystoliths.In R.E. Crick ed., Origin, evolution and modern aspects of biomineralization. Plenum, New York, pp. 409–418.Google Scholar
  24. Takhtajan, A. 1986. Floristic region of the world. University of California, Berkeley.Google Scholar
  25. Takhtajan, A. 1987. Systema Magnoliphytorum. Nauka, Leningrad. (In Russian).Google Scholar
  26. Thorne, R.F. 1992. Classification and geography of the flowering plants. Bot. Rev. (Lancaster)58: 225–348.Google Scholar

Copyright information

© The Botanical Society of Japan 1993

Authors and Affiliations

  • Hiroaki Setoguchi
    • 1
  • Hiroshi Tobe
    • 2
  • Hideaki Ohba
    • 1
  • Megumi Okazaki
    • 3
  1. 1.University MuseumUniversity of TokyoTokyoJapan
  2. 2.Department of Natural Environmental Sciences, Faculty of Integrated Human StudiesKyoto UniversityKyoto-shi, KyotoJapan
  3. 3.Department of Biology, Faculty of EducationTokyo Gakugei UniversityKoganei-shi, TokyoJapan

Personalised recommendations