Measuring orientation of human body segments using miniature gyroscopes and accelerometers

Article

Abstract

In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate measurement of the orientation of human body segments using an inertial measurement unit (IMU). An IMU containing three single-axis accelerometers and three single-axis micromachined gyroscopes was assembled in a rectangular box, sized 20×20×30 mm. The presented orientation estimation algorithm continuously corrected orientation estimates obtained by mathematical integration of the 3D angular velocity measured using the gyroscopes. The correction was performed using an inclination estimate continuously obtained using the signal of the 3D accelerometer. This reduces the integration drift that originates from errors in the angular velocity signal. In addition, the gyroscope offset was continuously recalibrated. The method was realised using a Kalman filter that took into account the spectra of the signals involved as well as a fluctuating gyroscope offset. The method was tested for movements of the pelvis, trunk and forearm. Although the problem of integration drift around the global vertical continuously increased in the order of 0.5°s−1, the inclination estimate was accurate within 3° RMS. It was shown that the gyroscope offset could be estimated continuously during a trial. Using an initial offset error of 1 rads−1, after 2 min the offset error was roughly 5% of the original offset error. Using the Kalman filter described, an accurate and robust system for ambulatory motion recording can be realised.

Keywords

Gyroscope Accelerometer Kalman Human Kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alusi, S. H., Worthington, J., Glickman, S., andBain, P. G. (2001): ‘A study of tremor in multiple sclerosis’,Brain: J. Neurol.,124, pp. 720–730Google Scholar
  2. Bachman, E. R. (2000): ‘Inertial and magnetic tracking of limb segment orientation for inserting humans in synthetic environments’. Naval postgraduate school, Monterey, USA.Google Scholar
  3. Barshan, B., and DURRANT-WHYTE, H. F. (1995): ‘Inertial navigation systems for mobile robots’,IEEE Trans. Robot. Automat.,11, pp. 328–342CrossRefGoogle Scholar
  4. Baselli, G., Legnani, G., Franco, P., Brognoli, F., Marras, A., Quaranta, F., andZappa, B. (2001): ‘Assessment of inertial and gravitational inputs to the vestibular system’,J. Biomech.,34, pp. 821–826CrossRefGoogle Scholar
  5. Baten, C. T. M., Oosterhoff, P., Kingma, I., Veltink, P. H., andHermens, H. J. (1996): ‘Inertial sensing in ambulatory load estimation’.Proc. IEEE Eng. in Med. & Biol Soc., 18th Ann. Int. Conf., AmsterdamGoogle Scholar
  6. Bernmark, E., andWiktorin, C. (2002): ‘A triaxial accelerometer for measuring arm movements’,Appl. Ergon.,33, pp. 541–547CrossRefGoogle Scholar
  7. Bortz, J. E. (1971): ‘A new mathematical formulation for strapdown inertial navigation’,IEEE Trans. Aerosp. Electron. Syst.,7, pp. 61–66Google Scholar
  8. Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., andJanssen, J. D. (1997): ‘A triaxial accelerometer and portable processing unit for the assessment of daily physical activity’,IEEE Trans. Biomed. Eng.,44, pp. 136–147CrossRefGoogle Scholar
  9. Brown, R. G., andHwang, P. Y. C. (1997): ‘Introduction to random signals and applied Kalman filtering’, (John Wiley and Sons, 1997)Google Scholar
  10. Dingweli, J. B., Cusumano, J. P., Sternad, D., andCavanagh, P. R. (2000): ‘Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking’,J. Biomech.,33, pp. 1269–1277Google Scholar
  11. Ferraris, F., Grimaldi, U., andParvis, M. (1995): ‘Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers’,Sensors Mater.,7, pp. 311–330Google Scholar
  12. Foerster, F., Smeja, M., andFahrenberg, J. U. (1999): ‘Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring’,Comput. Human Behav.,15, pp. 571–583Google Scholar
  13. Foxlin, E. (1996): ‘Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter’,Proc. VRAIS Google Scholar
  14. Hansson, G. A., Asterland, P., Holmer, N. G., andSkerfving, S. (2001): ‘Validity and reliability of triaxial accelerometers for inclinometry in posture analysis’,Med. Biol. Eng. Comput.,39, pp. 405–413CrossRefGoogle Scholar
  15. Ignagni, M. B. (1990): ‘Optimal strapdown attitude integration algorithms’,J. Guidance,12, pp. 363–369Google Scholar
  16. Jlang, Y. F., andLin, Y. P. (1992): ‘Improved strapdown coning algorithms’,IEEE Trans. Aerosp. Elec. Syst.,28, pp. 484–489Google Scholar
  17. Kalman, R. E. (1960): ‘A new approach to linear filtering and prediction problems’,J. Basic Eng., pp. 35–45Google Scholar
  18. Kemp, B., Janssen, A. J. M. W., andVan Der Kamp, B. (1998): ‘Body position can be monitored in 3D using minature accelerometers and earth-magnetic field sensors’,Electroenceph. Clin. Neurophysiol./Electromyogr. Motor Control,109, pp. 484–488Google Scholar
  19. Lötters, J., Bomer, J., Verloop, T., Droog, E., Olthuis, W., Veltink, P. H., andBergveld, P. (1998): ‘In-use calibration procedure for a triaxial accelerometer’,Sensors Actuators A, Phys.,66, pp. 205–212Google Scholar
  20. Luinge, H. J., andVeltink, P. H. (2004): ‘Inclination measurement of human movement using a 3D accelerometer with autocalibration’,IEEE Trans. Neural Syst. Rehabil. Eng.,12, pp. 112–121CrossRefGoogle Scholar
  21. Manson, A. J., Brown, P., O'sullivan, J. D., Asselman, P., Buckwell, D., andLees, A. J. (2000): ‘An ambulatory dyskinesia monitor’,J. Neurol. Neurosurg. Psychiatry,68, pp. 196–201CrossRefGoogle Scholar
  22. Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2003): ‘Detection of daily physical activities using a triaxial accelerometer’,Med. Biol. Eng. Comput.,41, pp. 296–301Google Scholar
  23. Mayagoitia, R. E., Nene, A. V., andVeltink, P. H. (2002): ‘Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems’,J. Biomech.,35, pp. 537–542CrossRefGoogle Scholar
  24. Miyazaki, S. (1997): ‘Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope’,IEEE Trans. Biomed. Eng.,44, pp. 753–759CrossRefGoogle Scholar
  25. Moe-Nilssen, R. (1998): ‘A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument’,Clin. Biomech.,13, pp. 328–335Google Scholar
  26. Moe-Nilssen, R., andHelbostad, J. L. (2004): ‘Trunk accelerometry as a measure of balance control during quiet standing’,J. Biomech.,37, pp, 121–126Google Scholar
  27. Najafi, B., Aminian, K., Loew, F., Blanc, Y., andRobert, P. A. (2002): ‘Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly’,IEEE Trans. Biomed. Eng.,49, pp. 843–851CrossRefGoogle Scholar
  28. Pappas, I. P., Popovic, M. R., Keller, T., Dietz, V., andMorari, M. (2001): ‘A reliable gait phase detection system’,IEEE Trans. Neural Syst. Rehabil. Eng.,9, pp. 113–125CrossRefGoogle Scholar
  29. Sweeney, P. C., Lyons, G. M., andVeltink, P. H. (2000): ‘Finite state control of functional electrical stimulation for the rehabilitation of gait’,Med. Biol. Eng. Comput.,38, pp. 121–126CrossRefGoogle Scholar
  30. Tong, K. Y., andGranat, M. H. (1998): ‘Virtual artificial sensor technique for functional electrical stimulation’,Med. Eng. Phys.,20, pp. 458–468CrossRefGoogle Scholar
  31. Tong, K., andGranat, M. H. (1999): ‘A practical gait analysis system using gyroscpes’,Med. Eng. Phys.,21, pp. 87–94CrossRefGoogle Scholar
  32. Uswatte, G. (2000): ‘Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter’,Stroke,31, pp. 662–667Google Scholar
  33. Van Den Bogert, A. J., Read, L., andNigg, B. M. (1996): ‘A method for inverse dynamic analysis using accelerometry’,J. Biomech.,29, pp. 949–954Google Scholar
  34. Veltink, P. H., Slycke, P., Hemssems, J., Buschman, R., Bultstra, G., andHermens, H. (2003): ‘Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator’,Med. Eng. Phys.,25, pp. 21–28CrossRefGoogle Scholar
  35. Willemsen, A. T., Bloemhof, F., andBoom, H. B. (1990a): ‘Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation’,IEEE Trans. Biomed. Eng.,37, pp. 1201–1208CrossRefGoogle Scholar
  36. Willemsen, A. T., Van Alste, J. A., andBoom, H. B. (1990b): ‘Real-time gait assessment utilizing a new way of accelerometry’,J. Biomech.,23, pp. 859–863CrossRefGoogle Scholar
  37. Williamson, R., andAndrews, B. J. (2000): ‘Sensor systems for lower limb functional electrical stimulation (FES) control’,Med. Eng. Phys.,22, pp. 313–325CrossRefGoogle Scholar
  38. Williamson, R., andAndrews, B. J. (2001): ‘Detecting absolute human knee angle and angular velocity using accelerometer and rate gyroscopes’,Med. Biol. Eng. Comput.,39, pp. 294–302CrossRefGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  1. 1.Signals Systems Group, Department of Electrical EngineeringUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations