Extraction of gastric slow waves from electrogastrograms: Combining independent component analysis and adaptive signal enhancement



The electrogastrogram (EGG), a cutaneous measurement of gastric electrical activity, is a mixture of gastric slow waves and noise. To detect the propagation of gastric slow waves, it is desired to obtain gastric slow waves in each of multichannel EGGs. Recently, independent component analysis (ICA) has shown its efficiency in separating the gastric slow wave from noisy multichannel EGGs. However, this method is not able to recover gastric slow waves in each of the multichannel EGGs. In this paper, a twostage combined method was proposed for extracting gastric slow waves. First, ICA was performed to separate the gastric slow wave component from noisy multichannel EGGs. Second, adaptive signal enhancement with a reference input derived by the ICA in the first stage was employed to extract gastric slow waves in each channel. Quantitative analysis showed that, with the proposed method, the maximum root-mean-square error between the estimated time lag and its theoretical value in the simulations was only 0.65. The results from real EGG data demonstrated that the combined method was able to extract gastric slow waves from individual channels of EGGs which are important to identify the slow wave propagation. Therefore, the proposed method can be used to detect propagation of gastric slow waves from multichannel EGGs.


Electrogastrogram Blind source separation Independent component analysis Adaptive filter Hilbert transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, W. C. (1922): ‘The electrogastrogram, and what it shows’,J. Am. Med. Assoc.,78, pp. 1116–1118Google Scholar
  2. Amari, S., Cichocki, A. andYang, H. H. (1996): ‘A new learning algorithm for blind signal separation’, in ‘Advances in neural information processing systems 8’ (MIT Press, 1996)Google Scholar
  3. Bell, T. J., andSejnowski, T. J. (1995): ‘An information-maximization approach to blind separation, and blind deconvolution’,Neural Comput.,7, pp. 1129–1159Google Scholar
  4. Cardoso, J.-F.: ‘Jade for real-valued data’, http:/sig.enst.fr/ cardoso/guidesepsou.html.Google Scholar
  5. Cardoso, J.-F. (1998): ‘Blind signal separation: statistical principles’,Proc. IEEE,90, pp. 2009–2026Google Scholar
  6. Cardoso, J.-F. (1999): ‘High-order contrasts for independent component analysis’,Neural Comput.,11, pp. 157–192CrossRefGoogle Scholar
  7. Chen, J. D. Z., Vandewalle, J., andSansen, W. (1989): ‘Adaptive method for cancellation of respiration artifact in electrogastric measurements’,Med. Biol. Eng. Comput.,27, pp. 57–63Google Scholar
  8. Chen, J. D. Z., andMcCallum, R. W. (1991): ‘Electrogastrography: measurement, analysis and prospective application’,Med. Biol. Eng. Comput.,29, pp. 339–350Google Scholar
  9. Chen, J. D. Z., andMcCallum, R. W. (1993): ‘Clinical application of electrogastrogram’,Am. J. Gastroenterol.,88, pp. 1324–1336Google Scholar
  10. Chen, J. D. Z., andLin, Z. (1994): ‘Comparison of adaptive filtering in time-, transform-, and frequency-domain: An electrogastrographic study’,Ann. Biomed. Eng., 22, pp. 423–431MathSciNetGoogle Scholar
  11. Chen, J. D. Z., Zou, X., Lin, X., Ouyang, S., andLiang, J. (1999): ‘Detection of gastric slow wave propagation from the cutaneous electrogastrogram’,Gastrointest. Liver Physiol.,40, pp. G424-G430Google Scholar
  12. Ferrara, E. R., andWidrow, B. (1981): ‘Multichannel adaptive filtering for signal enhancement’,IEEE Acoust. Speech Signal Process,29, pp. 53–62Google Scholar
  13. Haykin, S. (2002): ‘Adaptive filter theory, 4th edn’ (Prentice-Hall, Inc., Upper Saddle River, NJ, 2002)Google Scholar
  14. Hyvärinen, A. (1999): ‘Fast, and robust fixed-point algorithms for independent component analysis’,IEEE Trans. Neural Netw.,10, pp. 626–634Google Scholar
  15. Hyvärinen, A. ‘The fast ica matlab package’.http://www.cis.hut.fi/aapo.Google Scholar
  16. Hyvärinen, A. (1999): ‘Survey on independent component analysis’,Neural Comput. Surv.,2, pp. 94–128Google Scholar
  17. Hyvärinen, A., Karhunen, J., andOja, E. (2001): ‘Independent component analysis’ (John Wiley & Sons, 2001)Google Scholar
  18. Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T. W., andSejnowski, T. J. (2001): ‘Imaging brain dynamics using independent component analysis’,Proc. IEEE,89, pp. 1101–122CrossRefGoogle Scholar
  19. Koch, K. L., Stewart, W. R., Stern, R. M., andVasey, M. W. (1987): ‘Electrogastrography: current issues in validation and methodology’,Psychophysiology,24, pp. 55–64Google Scholar
  20. Kothapalli, B. (1993): ‘Electrogastrogram simulation using a threedimensional model’,Med. Biol. Eng. Comput.,31, pp. 482–486Google Scholar
  21. Lee, T.-W. (1998): ‘Independent component analysis: theory and applications’ (Kluwer Academic Publishers, Boston, MA, 1998)Google Scholar
  22. Lee, T.-W., Girolami, M., andSejnowski, T. J. (1999): ‘Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources’,Neural Comput.,11, pp. 417–441CrossRefGoogle Scholar
  23. Lee, T.-W., Bell, A. J., Girolami, M., andSejnowski, T. J. (2000): ‘A unifying information-theoretic framework for independent component analysis’,Comput. Math. Appl.,31, pp. 1–21MathSciNetGoogle Scholar
  24. Liang, H. (2001): ‘Adaptive independent component analysis of multichannel electrogastrograms’,Med. Eng. Phys.,23, pp. 91–97CrossRefGoogle Scholar
  25. Liang, H., Yin, F., Lin, Z., andMcCallum, R. W. (2004): ‘A combined method for extraction of gastric slow waves from multichannel electrogastrograms’,Neurogastroenterol. Motil.,16, p. 9.Google Scholar
  26. Liang, J., andChen, J. D. Z. (1997): ‘What can be measured from surface electrogastrography’,Dig. Dis. Sci.,42, pp. 1331–1343CrossRefGoogle Scholar
  27. Lin, Z., andChen, J. D. Z. (1994): ‘Recursive running dct algorithm and its application in adaptive filtering of surface electrical recording of small intestine’,Med. Biol. Eng. Comput.,32, pp. 317–322Google Scholar
  28. Lin, Z., Liang, H., andMcCallum, R. W. (2000): ‘Combined methods for recovery of gastric slow waves from multichannel electrogastriograms’,Proc. 22nd Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 1345–1348Google Scholar
  29. Lu, W., andRajapakse, J. C. (2001): ‘ICA with reference’,Proc. Third Int. Conf. on ICA and Blind Source Separation, pp. 120–125Google Scholar
  30. Makeig, S.: Ica/eeg toolbox. computational neurobiology laboratory, the salk institute.http://www.cnl.salk.edu/tewon/ica_cnl.html.Google Scholar
  31. Mintchev, M. P., Kingma, Y. J., andBowes, K. L. (1993): ‘Accuracy of cutaneous recordings of gastric electrical activity’,Gastroenterology,104, pp. 1273–1280Google Scholar
  32. Narayan, S. S., Peterson, A. M., andNarasimha, M. J. (1983): ‘Transform domain lms algorithm’,IEEE Trans Acoust. Speech Signal Process,31, pp. 609–614CrossRefGoogle Scholar
  33. Ohata, M., Matsuomoto, T., Shigematsu, A., andMatsuoka, K. (2003): ‘Independent component analysis of electrogastrogram data’,Proc. 4th Int. Symposium on ICA and Blind Signal Separation, Nara, Japan, pp. 53–58Google Scholar
  34. Oppenhem, A., andSchafer, R. (1975): ‘Digital signal processing’ (Prentice-Hall, New Jersey, 1975)Google Scholar
  35. Pearlmutter, B. A., andParra, L. C. (1996): ‘A context-sensitive generalization of ica’,Proc. ICONIP, pp. 151–157Google Scholar
  36. Sarna, S. K. (1975): ‘Gastrointestinal electrical activity: Terminology’,Gastroenterology,68, pp. 1631–1635Google Scholar
  37. Treichler, J. R. (1979): ‘Transient and convergent behavior of the adaptive line enhancer’,IEEE Trans. Acoust. Speech Signal Process.,27, pp. 53–62CrossRefMATHGoogle Scholar
  38. Verhagen, M. A. M. T., Samsom, M., Schelven, L. J. V., andSmout, A. J. P. M. (1999): ‘Pitfalls in the analysis of electrogastrographic recordings’,Gastroenterology,117, pp. 453–460CrossRefGoogle Scholar
  39. Wang, Z. S., Cheung, J. Y., andChen, J. D. Z. (1999): ‘Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network’,Med. Biol. Eng. Comput.,37, pp. 80–86Google Scholar
  40. Wang, Z. S., andChen, J. D. Z. (2001): ‘Blind separation of slow waves and spikes from gastrointestinal myo-electrical recordings’,IEEE Trans. Inform. Technol. Biomed.,5, pp. 133–137Google Scholar
  41. Widrow, B., Glover, J. R., Mccool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, E., andGoodlin, R. C. (1975): ‘Adaptive noise canceling: principles and applications’,Proc. IEEE,63, pp. 1692–1716Google Scholar
  42. Zeidler, J. R. (1990): ‘Performance analysis of lms adaptive prediction filters’,Proc. IEEE,78, pp. 1781–1806CrossRefGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  1. 1.School of Health Information SciencesUniversity of Texas at HoustonHoustonUSA

Personalised recommendations