Medical and Biological Engineering and Computing

, Volume 38, Issue 5, pp 497–502 | Cite as

Assessment of neck tissue fibrosis using an ultrasound palpation system: A feasibility study



Fibrotic change in the soft tissue of the neck is a common side-effect after radiotherapy treatment for cancers of the head and neck region. The development of a quantitative approach for the assessment of neck tissue stiffness using an ultrasound palpation system (UPS) is reported. A testing protocol was established with the participation of eight normal subjects and four patients who had neck fibrosis after previous radiotherapy to the neck. Six reference sites were assessed on each side of the neck in each subject. Site-dependence, inter-observer variability, and intra-observer variability were further evaluated by measurement of sites 1cm anterior, posterior, superior and inferior to two of the reference sites on each side of the neck, and by repeating measurements using a second observer on the same occasion and using the same observer one week afterwards. The mean tissue Young's modulus for normal subjects was 12.8±3.9 kPa, and that of the radiotherapy-treated patients ranged from 46.4 to 108.3 kPa. The modulus shows limited variation among anatomical sub-sites within the neck. For a confidence level of 95%, there was a variation of ±14.2% for site-dependence, ±15.2% for inter-observer, and ±7.2% for intra-observer tests for the group of normal subjects. The variation in the patients was ±13.6% for site-dependence, and ±13.1% for the inter-observer test.


Ultrasound Palpation Fibrosis Radiotherapy Neck Cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, J., Fan, Y., Li, X., andLi, X. (1999): ‘Tracing echo segment selection method for strain reconstruction’,Ultrasonics,37, pp. 51–57Google Scholar
  2. Céspedes, I., Ophir, J., Ponnekanti, H., andMaklad, N. (1993): ‘Elastography: elasticity imaging using ultrasound with application to muscle and breast in-vivo’,Ultrasound Imaging,15, pp. 73–88Google Scholar
  3. Daly, C. H., andWheeler, III, J. B. (1971): ‘The use of ultra-sonic thickness measurement in the clinical evaluation of the oral soft tissues’,J. Int. Dent.,21, pp. 418–429Google Scholar
  4. Dikstein, S., andHartzshtark, A. (1981): ‘In vivo measurement of some elastic properties of human skin’ inMarks, R., andPayne, P. A. (Eds.). ‘Bioengineering and skin’ (MTP Press, Lancaster) pp. 45–53Google Scholar
  5. Ferguson-Pell, M., Hagisawa, S., andMasiello, R. D. (1994): ‘A skin indentation system using a pneumatic bellows’,J. Rehab. Res. Dev.,31, pp. 15–19Google Scholar
  6. Goss, S. A., Johnston, R. L., andDunn, F. (1980): ‘Compilation of empirical ultrasonic properties of mammalian tissue’,J. Acoust. Soc. Am.,68, pp. 93–108CrossRefGoogle Scholar
  7. Hayes, W. C., Keer, L. M., Herrmann, G., andMockros, L. F. (1972): ‘A mathematical analysis for indentation tests of articular cartilage’,J. Biomech.,5, pp. 541–551CrossRefGoogle Scholar
  8. Horikawa, M., Ebihara, S., Sakai, F., andAkiyama, M. (1993): ‘Non-invasive measurement method for hardness in muscular tissues’,Med. Biol. Eng. Comput.,31, pp. 623–627Google Scholar
  9. Huang, D. T., andMak, A. F. T. (1994): ‘A finite element analysis of indentation on a soft tissue layer: The effect of indentor misalignment and non-parallel tissue layer’. Proc. Int. Conf. Biomedical Engineering, Hong Kong, pp. 397–400Google Scholar
  10. Kellel, F., Ophir, J., Magee, K., andKrouskop, T. (1998): ‘Elastographic imaging of low-contrast elastic modulus distributions in tissue’,Ultrasound Med. Biol.,24, pp. 409–425Google Scholar
  11. Kirk, E., andKvorning S. A. (1949): ‘Quantitative measurements of the elastic properties of the skin and subcutaneous tissues in young and old individuals’,J. Gerontology,4, pp. 273–283Google Scholar
  12. Krouskop, T. A., Dougherty, D. R., andVinson, F. S. (1987): ‘A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue’,J. Rehab. Res. Dev.,24, pp. 1–8Google Scholar
  13. Krouskop, T. A., Wheeler, T. M., Kallel, F., Garra, B. S., andHall, T. (1998): ‘Elastic moduli of breast and prostate tissues under compression’,Ultrasonic Imaging,20, pp. 260–274Google Scholar
  14. Kydd, W. L., Daly, C. H., andNansen, D. (1974): ‘Variation in the response to mechanical stress of human soft tissues as related to age’,J. Prosthet. Dent.,32, pp. 493–500Google Scholar
  15. Lerner, R. M., Huang, S. R., andParker, K. J. (1990): ‘“Sonoelasticity’ images derived from ultrasound signals in mechanically vibrated tissues’,Ultrasound Med. Biol.,16, pp. 231–239CrossRefGoogle Scholar
  16. Lewis, H. E., Mayer, J., andPandiscio, A. A. (1965): ‘Recording Skimfold Calipers for the Determination of Subcutaneous Edema’,J. Lab. Clin. Med.,66, pp. 154–160Google Scholar
  17. Mak, A. F. T., Liu, G. H. W., andLee, S. Y. (1994): ‘Biomechanical assessment of below-knee residual limb tissue’,J. Rehab. Res. Dev.,31, pp. 188–198Google Scholar
  18. O'Donnell, M., Skovoroda, A. R., Shapo, B. M., andEmelianov, S. Y. (1994): ‘Internal displacement and strain imaging using ultrasonic speckle tracking’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,41, pp. 314–325Google Scholar
  19. Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y., andLi, X. (1991): ‘Elastography: a quantitative method for imaging the elasticity of biological tissues’,Ultrasonic Imaging,13, pp. 111–134Google Scholar
  20. Parker, K. J., Eu, D., Graceswki, S. M., Yeung, F., andLevinson, S. F. (1998): ‘Vibration sonoelastography and the detectability of lesions’,Ultrasound Med. Biol.,24, pp. 1437–1447CrossRefGoogle Scholar
  21. Pathak, A. P., Silver-Thorn, M. B., Thiefelder, C. A., andPrieto, T. E. (1998): ‘A rate controlled indentor for in vivo analysis of residual limb tissues’,IEEE Trans. Rehab. Eng.,6, pp. 12–20CrossRefGoogle Scholar
  22. Ponnekanti, H., Ophir, J., andCéspedes, I. (1994): ‘Ultrasonic imaging of the stress distribution in elastic media due to an external compressor’,Ultrasound Med. Biol.,20, pp. 27–33CrossRefGoogle Scholar
  23. Reynolds, D. (1988): ‘Shape design and interface load analysis for below-knee prosthetic sockets’. PhD dissertation, University of LondonGoogle Scholar
  24. Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlker, J. B., andEmelianov, S. Y. (1998): ‘Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics’,Ultrasound Med. Biol.,24, pp. 1419–1435CrossRefGoogle Scholar
  25. Schade, H. (1912): ‘Untersuchungen zur organfunction des bindegewebes’,Ztschr. f. Exper. Path u. Therapis,11, pp. 369–399Google Scholar
  26. Silver-Thorn, M. B. (1991): ‘Prediction and experimental verification of residual limb/prosthetic socket interface pressures for below-knee amputees’. PhD dissertation, Northwestern University, IllinoisGoogle Scholar
  27. Skovoroda, A. R., Lubinski, M. A., Emelianov, S. Y., andO'Donnell, M. (1999): ‘Reconstructive elasticity imaging for large deformations’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,46, pp. 523–535Google Scholar
  28. Steege, J. W., Schnur, D. S., andChildress, D. S. (1987): ‘Prediction of pressure at the below-knee socket interface by finite element analysis’. Proc. Symp. Biomechanics of Normal and Pathological Gait, Boston, AMSE, WAM, pp. 39–43Google Scholar
  29. Torres-Moreno, R. (1991): ‘Biomechanical analysis of the interation between the above-knee residual limb and the prosthetic socket’. PhD dissertation, University of Strathclyde, GlasgowGoogle Scholar
  30. Vannah, W. M., andChildress, D. S. (1988): ‘An investigation of the three-dimensional mechanical response of bulk muscular tissue: experimental methods and results’ inSpilker, R. L., andSimon, B. P. (Eds): ‘Computational methods in bioengineering’ (ASME, New York) pp. 493–503Google Scholar
  31. Vannah, W. M., Drvaric, D. M., Hastings, J. A., Stand, III, J. A., andHarning, D. M. (1999). ‘A method of residual limb stiffness distribution measurement’,J. Rehab. Res. Dev.,36, web versionGoogle Scholar
  32. Yamakoshi, Y., Sato, J., andSato, T. (1990): ‘Ultrasonic imaging of internal vibration of soft tissue under forced vibration’,IEEE Trans. Ultrasonics, Ferroelec. Frequency Control,37, pp. 45–53Google Scholar
  33. Zheng, Y. P., andMak, A. F. T. (1996): ‘An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo’,IEEE Trans. Biomed. Eng.,43, pp. 912–918Google Scholar
  34. Zheng, Y. P., Huang, D. T., andMak, A. F. T. (1997): ‘Experimental studies of indentor misalignment for indentation test on soft tissues’. Proc. 19th IEEE EMBS Int. Conf., Chicago, pp. 2250–2253Google Scholar
  35. Zheng, Y. P., andMak, A. F. T. (1999): ‘Effective elastic properties for lower limb soft tissues from manual indentation experiment’,IEEE Trans. Rehab. Eng.,7, pp. 257–267Google Scholar
  36. Zheng, Y. P., Mak, A. F. T., andLue, B. K. (1999): ‘Objective assessment of limb tissue elasticity: Development of a manual indentation procedure’,J. Rehab. Res. Dev.,36, pp. 71–85Google Scholar
  37. Zheng, Y. P., Choi, Y. K. C., Wong, K., Chan, S., andMak, A. F. T. (2000): ‘Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system’,Ultrasound Med. Biol.,26, pp. 451–456CrossRefGoogle Scholar
  38. Ziegert, J. C., andLewis, J. L. (1978): ‘In-vivo mechanical properties of soft tissue covering bony prominences’, Trans. ASME,100, pp. 194–201Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Rehabilitation Engineering CenterHong Kong Polytechnic UniversityHong Kong
  2. 2.Department of Clinical OncologyChinese University of Hong KongHong Kong

Personalised recommendations