Advertisement

Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique

  • M. M. KnightEmail author
  • B. D. Idowu
  • D. A. Lee
  • D. L. Bader
Article

Abstract

This paper examines temporal changes in the organisation of the cytoskeleton within isolated articular chondrocytes cultured for up to 7 days in agarose constructs. Fluorescent labelling and confocal microscopy were employed to visualise microtubules (MT), vimentin intermediate filaments (VIF) and actin microfilaments (AMF). To quantify the degree of cytoskeletal organisation within populations of cells, a novel image analysis technique has been developed, and fully characterised. Organisation was quantified in terms of an Edge Index, which reflects the density of ‘edges’ present within the confocal images as defined by a Sobel digital filter. This parameter was shown to be independent of image intensity and, for all three cytoskeletal components, was validated statistically against a visual assessment of organisation. Both MT and VIF exhibited fibrous networks extending throughout the cytoplasm, while AMF appeared as punctate units associated with the cell membrane. The use of the Edge Index parameter revealed statistical significant temporal variation, in particular associated with VIF and AMF. These findings indicate the possibility of cytoskeletal mediated temporal variation in many aspects of cell behaviour following isolation from the intact tissue. Furthermore, the image analysis techniques are likely to be useful for future studies aiming to quantify changes in cytoskeletal organisation.

Keywords

Cytoskeleton Quantification Image analysis Confocal Chondrocyte Actin Microtubules Vimentin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, M., Archer, C. W., andRalphs, J. R. (1994): ‘Cytoskeleton of cartilage cells’,Micro. Res. Tech.,28, pp. 372–377Google Scholar
  2. Boggs, B. A., Minotti, A. M., Loeb, L. M., Cook, R., andCabral, F. (1988). ‘Mutations affecting assembly of beta-tubulin localize to a region near the carboxyl terminus’,J. Biol. Chem.,263, pp. 14566–14573Google Scholar
  3. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., andHunziker, E. B. (1995): ‘Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture’,J. Cell Sci.,108, pp. 1497–1508Google Scholar
  4. Crenshaw, H. C., Allen, J. A., Skeen, V., Harris, A., andSalmon, E. D. (1996): ‘Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells’,Exp. Cell Res.,227, pp. 285–297Google Scholar
  5. Durrant, L. A., Archer, C. W., Benjamin, M., andRalphs, J. R. (1999): ‘Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture’,J. Anat.,194, pp. 343–353CrossRefGoogle Scholar
  6. Elder, S. H., Kimura, J. H., Soslowsky, L. J., Lavagnino, M., andGoldstein, S. A. (2000): ‘Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells’,J. Orthop. Res.,18, pp. 78–86CrossRefGoogle Scholar
  7. Farquharson, C., Lester, D., Seawright, E., Jefferies, D., andHouston, B. (1999): ‘Microtubules are potential regulators of growth-plate chondrocyte differentiation and hypertrophy’,Bone,24, pp. 405–412Google Scholar
  8. Ganesan, L., andBhattacharyya, P. (1997): ‘Edge detection in untextured and textured images—a common computational framework’,IEEE Trans. Systems, Man, Cybernetics—Part B,27, pp. 823–835Google Scholar
  9. Guilak, F. (1994): ‘Volume and surface area measurement of viable chondrocytesin situ using geometric modelling of serial confocal sections’,J. Microsc.,173, pp. 245–256Google Scholar
  10. Guignandon, A., Usson, Y., Laroche, N., Lafage-Proust, M-H., Sabido, O., Alexandre, C., andVico, L. (1997): ‘Effects of intermittent or continuous gravitational stresses on cell-matrix adhesion: Quantitative analysis of focal contacts in osteoblastic ROS 17/2.8 cells’,Exp. Cell Res.,236, pp. 66–75CrossRefGoogle Scholar
  11. Heath, M., Sarkar, S., Sanocki, T., andBowyer, K. (1998): ‘Comparison of edge detectors: A methodology and initial study’,Computer Vision and Image Understanding,69, pp. 38–54CrossRefGoogle Scholar
  12. Idowu, B. D., Knight, M. M., Bader, D. L., andLee, D. A. (2000): ‘Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose’,Histochem. J.,32, pp. 165–174Google Scholar
  13. Knight, M. M. (1997): ‘Deformation of isolated articular chondrocytes cultured in agarose constructs’, PhD thesis,University of London Google Scholar
  14. Knight, M. M., Lee, D. A., andBader, D. L. (1998): ‘The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose’,Biochim. Biophys. Acta,1405, pp. 67–77Google Scholar
  15. Kouri, J. B., Arguello, C., Luna, J., andMena, R. (1998): ‘Use of microscopical techniques in the study of human chondrocytes from osteoarthritic cartilage: An overview’,Microsc. Res. Tech.,40, pp. 22–26CrossRefGoogle Scholar
  16. Langelier, E., Suetterlin, R., Aebi, U., andBuschmann, M. D. (1999): ‘Zonal dependence of the chondrocyte cytoskeleton andin vitro response to load’,Trans. Orthop. Res. Soc., p. 631Google Scholar
  17. Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., andBader, D. L. (2000): ‘Chondrocyte deformation within compressed agarose constructs at the cellular and subcellular levels’,J. Biomech.,33, pp. 81–95Google Scholar
  18. Meazzini, M. C., Toma, C. D., Schaffer, J. L., Gray, M. L., andGerstenfeld, L. C. (1998): ‘Osteoblast cytoskeletal modulation in response to mechanical strainin vitro’,J. Orthop. Res.,16, pp. 170–180CrossRefGoogle Scholar
  19. Parkkinen, J. J., Lammi, M. J., Inkinen, R., Jortikka, M., Tammi, M., Virtanen, I., andHelminen, H. J. (1995): ‘Influence of short-term hydrostatic pressure on organisation of stress fibres in cultured chondrocytes’,J. Orthop. Res.,13, pp. 495–502CrossRefGoogle Scholar
  20. Pawley, J. B. (Ed.) (1995): ‘Handbook of confocal microscopy’ (Plenum Press, New York)Google Scholar
  21. Pender, N., andMcCulloch, C. A. G. (1994): ‘Effects of mechanical stretch on actin polymerisation in fibroblasts of the peridontium’, inLyall, F., andEl Haj, A. J., (Eds): ‘Biomechanics and cells’, (Cambridge University Press, Cambridge)Google Scholar
  22. Sheppard, J. R. (1989): ‘Axial resolution of confocal fluorescence microscopy’,J. Microsc.,154, pp. 237–241Google Scholar
  23. Sims, J. R., Karp, S., andIngber, D. E. (1992): ‘Altering the cellular mechanical force balance results in changes in cell, cytoskeleton and nuclear shape’,J. Cell Sci.,103, pp. 1215–1222Google Scholar
  24. Verschure, P. J., Van Marle, J., Van Noorden, C. J. F., andVan Der Berg, W. B. (1997): ‘The contribution of quantitative confocal laser scanning microscopy in cartilage research: Chondrocyte insulin-like growth factor-1 receptors in health and pathology’,Microsc. Res. Tech.,37: pp. 285–298CrossRefGoogle Scholar
  25. Wilson, T. (1988): ‘Three-dimensional imaging in confocal systems’,J. Microsc.,153: pp. 161–169Google Scholar

Copyright information

© IFMBE 2001

Authors and Affiliations

  • M. M. Knight
    • 1
    Email author
  • B. D. Idowu
    • 1
  • D. A. Lee
    • 1
  • D. L. Bader
    • 1
  1. 1.Interdisciplinary Research Centre in Biomedical Materials, Queen MaryUniversity of LondonLondonUK

Personalised recommendations