Robot-aided neurorehabilitation of the upper extremities



Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support movement therapy of the upper extremities in subjects with neurological pathologies. The devices are critically compared with respect to technical function, clinical applicability, and, if they exist, clinical outcomes.


Neurorehabilitation Movement therapy Robotics Paralysis Stroke Upper extremities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, M. L., Krebs, H. I., Hogan, N., McDowell, F., andVolpe, B. T. (1997): ‘The effect of robot-assisted therapy and rehabilitive training on motor recovery following stroke’,Arch. Neurol.,54, pp. 443–446Google Scholar
  2. Basmajian, J. V., Gowland, C. A., andFinlayson, M. A. (1987): ‘Stroke treatment: comparison of integrated behavioural-physical therapy vs traditional physical therapy programs’,Arch. Phys. Med. Rehabil.,68, pp. 267–272Google Scholar
  3. Burdea, G., Popescu, V., Hentz, V., andGolbert, K. (2000): ‘Virtual reality-based orthopedic telerehabilitation’,IEEE Trans. Rehab. Eng.,8, pp. 430–432CrossRefGoogle Scholar
  4. Coote, S., Stokes, E. K., Amirabdollahian, F., Loureiro, R., andHarwin, W. (2002): ‘Robot mediated therapy for the upper extremity post stroke’,Irish J. Med. Sci.,170, p. 127Google Scholar
  5. Coote, S., Stokes, E., Murphy, B., andHarwin, W. (2003): ‘The effect of GENTLE/s robot-mediated therapy on upper extremity dysfunction post stroke’. Proc. 8th ICORR 2003, pp. 59–63Google Scholar
  6. Coote, S., andStokes, E. K. (2003): ‘The GENTLE/s clinical trial: effect of treatment on maximal voluntary isometric contraction’. Proc. 7th Conf. AAATE Dublin, p. 78Google Scholar
  7. Cozens, J. A. (1999): ‘Robotic assistance of an active upper limb exercise in neurologically impaired patients’,IEEE Trans. Rehab. Eng.,7, pp. 254–256CrossRefGoogle Scholar
  8. Dickstein, R., Hocherman, S., Pillar, T., andShaham, R. (1986): ‘Stroke rehabilitation. Three exercise therapy approaches’,Phys. Ther.,66, pp. 1233–1238Google Scholar
  9. Fasoli, S. E., Krebs, H. I., Stein, J. S., Frontera, W. R., andHogan, N. (2003): ‘Effects of robotic therapy on motor impairment and recovery in chronic stroke’,Arch. Phys. Med. Rehabil.,84, pp. 477–482CrossRefGoogle Scholar
  10. Feys, H. M., de Weert, W. J., Selz, B. E., Cox Steck, G. A., Spichiger, R., Vereeck, L. E., Putman, K. D., andVan Hoydonck, G. A. (1998): ‘Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, ramdomized, controlled multicenter trial’,Stroke,29, pp. 785–792Google Scholar
  11. Harwin, W., Loureiro, R., Amirabdollahian, F., Taylor, M., Johnson, G., Stokes, E., Coote, S., Topping, M., Collin, C. et al. (2001): ‘The Gentle/s project: a new method for delivering neur-rehabilitation’, in Marincek, al. (Eds.): Assistive technology—added value to the quality of life AAATE'01 (IOS Press, Amsterdam 2001), pp. 36–41Google Scholar
  12. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., andWerner, C. (2003): ‘Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects’,Arch. Phys. Med. Rehabil.,84, pp. 915–920Google Scholar
  13. Hogan, N. (1985): ‘Impedance control: An approach to manipulation, Parts I, II, and III’,J. Dynam. Syst., Meas. Control, 107, pp. 1–23MATHGoogle Scholar
  14. Hogan, N., Krebs, H. I., Sharon, A., andCharnnarong, J. (1995): ‘Interactive robotic therapist’. US Patent 5466213Google Scholar
  15. Jack, D., Boian, R., Merians, A. S., Tremaine, M., Burdea, G. C., Adamovich, S. V., Recce, M., andPoizner, H. (2001): ‘Virtual reality-enhanced stroke rehabilitation’,IEEE Trans. Neural Syst. Rehab. Eng.,9, pp. 308–318Google Scholar
  16. Jezernik, S., Schärer, R., Colombo, G., andMorari, M. (2003): ‘Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals’,Spinal Cord,41, pp. 657–666CrossRefGoogle Scholar
  17. Krebs, H. I., Hogan, N., Aisen, M. L., andVolpe, B. T. (1998): ‘Robot-aided neurorehabilitation’,IEEE Trans. Rehab. Eng.,6, pp. 75–87CrossRefGoogle Scholar
  18. Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., andKoetsier, J. C. (1997): ‘Effects of intensity of rehabilitation after stroke. A research synthesis’,Stroke,28, pp. 1550–1556Google Scholar
  19. Kwakkel, G., Wagenaar, R. C., Twisk, J. W. R., Lankhorst, G. J., andKoetsier, J. C. (1999): ‘Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial’,Lancet,35, pp. 191–196Google Scholar
  20. Kwakkel, G., Kollen, B. J., andWagenaar, R. C. (2002): ‘Long term effects of upper and lower limb training after stroke: a randomised trial’,J. Neurol. Neurosurg. Psychiat.,72, pp. 473–479Google Scholar
  21. Kwee, H., Duimel, J., Smit, J., De Moed, A. T., Van Woerden, J., andKolk, L. V. D. (1998): ‘The manus wheelchair-mounted manipulator: developments toward a production model’. Proc. 3rd Int. Conf. Assoc. Advancement Rehab. Technol., pp. 460–462Google Scholar
  22. Langhammer, B., andStanghelle, J. K. (2000): ‘Bobarth or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study’,Clin. Rehabil.,14, pp. 361–369CrossRefGoogle Scholar
  23. Leifer, L. (1981): ‘Rehabilitive robotics’,Robot Age, pp. 4–11Google Scholar
  24. Lord, J. P., andHall, K. (1986): ‘Neuromuscular re-education versus traditional programs for stroke rehabilitation’,Arch. Phys. Med. Rehabil.,14, pp. 88–91Google Scholar
  25. Lum, P. S., Reinkensmeyer, D. J., andLehman, S. L. (1993): ‘Robotic assist devices for bimanual physical therapy: preliminary experiments’,IEEE Trans. Rehab. Eng.,1, pp. 185–191CrossRefGoogle Scholar
  26. Lum, P. S., Lehman, S. L., andReinkensmeyer, D. J. (1995): ‘The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients’,IEEE Trans. Rehab. Eng.,3, pp. 166–174CrossRefGoogle Scholar
  27. Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., andvan der Loos, M. (2002): ‘Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke’,Arch. Phys. Med. Rehabil.,83, pp. 952–959CrossRefGoogle Scholar
  28. Nef, T., andRiener, R. (2004): ‘Design of the arm rehabilitation robot ARMin’. Internal Report, Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, SwitzerlandGoogle Scholar
  29. Platz, T. (2003): ‘Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht’,Nervenarzt,74, pp. 841–849CrossRefGoogle Scholar
  30. Popescu, V. G., Burdea, G. C., Bouzit, M., andHentz, V. R. (2000): ‘A virtual-reality-based telerahabilitation system with force feedback’,IEEE Trans. Inform. Technol. Biomed.,4, pp. 45–51CrossRefGoogle Scholar
  31. Reinkensmeyer, D. J., Dewald, J. P., andRymer, W. Z. (1999a): ‘Guidance-based quantification of arm impairment following brain injury: a pilot study’,IEEE Trans. Rehab. Eng.,7, pp. 1–11CrossRefGoogle Scholar
  32. Reinkensmeyer, D. J., Schmit, B. D., andRymer, W. Z. (1999b): ‘Mechatronic assessment of arm impairment after chronic brain injury’,Technol. Health Care,7, pp. 431–435Google Scholar
  33. Riener, R., andFuhr, T. (1998): ‘Patient-driven control of FES-supported standing-up: a simulation study’.IEEE Trans. Rehabil. Eng.,6, pp. 113–124CrossRefGoogle Scholar
  34. Seahak, K., Somsak, W., Masahiro, I., Yasuharu, K., andSato, M. (1998): ‘Personal VR system for rehabilitation to hand movement’. Proc. 7th Int. Conf. on Artificial Reality and Teleexistence, pp. 102–108Google Scholar
  35. Sunderland, A., Tinson, D. J., Bradley, E. L., Fletcher, D., Langton, H. R., andWade, D. T. (1992): ‘Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial’,J. Neurol. Neurosurg. Psychiat.,55, pp. 530–535Google Scholar
  36. Schleenbaker, R. E., andMainous, A. G. (1993): ‘Electromyographical biofeedback for neuromuscular re-education in the hemiplegic stroke patient: a meta-analysis’,Arch. Phys. Med. Rehabil.,74, pp. 1301–1304CrossRefGoogle Scholar
  37. Sonde, L., Gip, C., Fernaeus, S. E., Nilsson, C. G., andVitanen, M. (1998): ‘Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm’,Scand. J. Rehabil. Med.,30, pp. 95–99Google Scholar
  38. Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., Fleming, W. C., Nepomuceno, C. S., Connell, J. S., andCrago, J. E. (1993): ‘Technique to improve chronic motor deficit after stroke’,Arch. Phys. Med. Rehab.,74, pp. 347–354Google Scholar
  39. Van der Linde, R. Q., Lammertse, P., Frederiksen, E., andRuiter, B. (2002): ‘The HapticMaster, a new high-performance haptic interface’. Proc. Eurohaptics, Edinburgh, UK, pp. 1–5Google Scholar
  40. van der Loos, H. F. M., Michalowski, S. J., andLeifer, J. L. (1988): ‘Development of an omnidirectional mobile vocational assistant robot’. Proc. 3rd Int. Conf. Assoc. Advancement Rehab. Technol., pp. 468–469Google Scholar
  41. Volpe, B. T., Krebs, H. I., Hogan, N., Edelstein, L., Diels, C., andAisen, M. (2000): ‘A novel approach to stroke rehabilitation’,Neurology,54, pp. 1938–1944Google Scholar
  42. Volpe, B. T., Ferraro, M., Krebs, H. I., andHogan, N. (2002): ‘Robotics in the rehabilitation treatment of patients with stroke’,Curr. Atherosclerosis Reports,4, pp. 270–276Google Scholar
  43. Wagenaar, R. C., Meijer, O. G., van Wieringen, P. C., Kuik, D. J., Hazenberg, G. J., Lindeboom, J., Wichers, F., andRuswijk, H. (1990): ‘The functional recovery of stroke: a comparison between neuro-developmental treatment and the Brunnstrom method’,Scand. J. Rehabil. Med.,22, pp. 1–8Google Scholar
  44. Zinn, M., Roth, B., Khatib, O., andSalisbury, J. K. (2004): ‘A new actuation approach for human friendly robot design’,Int. J. Robot. Res.,23, pp. 379–398CrossRefGoogle Scholar

Copyright information

© FMBE 2005

Authors and Affiliations

  1. 1.Rehabilitation Engineering Group, Automatic Control LaboratorySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.Spinal Cord Injury Center, University Hospital BalgristUniversity ZurichSwitzerland
  3. 3.Hocoma AGVolketswilSwitzerland

Personalised recommendations