Advertisement

Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes

  • C. Kaps
  • A. Loch
  • A. Haisch
  • H. Smolian
  • G. R. Burmester
  • T. Häupl
  • M. Sittinger
Article

Abstract

The objective of the study was to evaluate the growth-promoting activity of human platelet supernanant on primary chondrocytes in comparison with fetal calf serum (FCS) supplemented cell culture medium. Furthermore, the differentiation potential of platelet supernatant was determined in three-dimensional artificial cartilage tissues of bovine articular chondrocytes. Proliferation of articular and nasal septal chondrocytes was assayed by incorporation of BrdU upon stimulation with ten different batches of human platelet supernatant. On bovine articular chondrocytes, all these batches were at least as growth-promoting as FCS. On nasal septal chondrocytes, nine out of ten batches revealed increased or equivalent mitogenic stimulation compared with medium supplemented with FCS. Three-dimensional culture and subsequent histological analysis of matrix formation were used to determine the differentiation properties of platelet supernatant on articular chondrocytes. Human platelet supernatant failed to induce the deposition of typical cartilage matrix components, whereas differentiation and matrix formation were apparent upon cultivation of articular chondrocytes with FCS. Proliferation assays demonstrated that human platelet supernatant stimulates growth of articular and nasal septal chondrocytes; however, platelet supernatant failed to stimulate articular chondrocytes to redifferentiate in three-dimensional chondrocyte cultures. Therefore platelet lysate may be suitable for chondrocyte expansion, but not for maturation of tissue-engineered cartilage.

Keywords

Tissue engineering Platelet supernatant Chondrocyte Differentiation Proliferation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arevalo-Silva, C. A., Cao, Y., Weng, Y., Vacanti, M., Rodriguez, A., Vacanti, C. A., andEavey, R. D. (2001): ‘The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage’,Tissue Eng.,7, pp. 81–88CrossRefGoogle Scholar
  2. Benya, P. D., andShaffer, J. D. (1982): ‘Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels’,Cell,30, pp. 215–224CrossRefGoogle Scholar
  3. Blanco, F. J., Geng, Y., andLotz, M. (1995): ‘Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression’,J. Immunol.,154, pp. 4018–4026Google Scholar
  4. Boumediene, K., Vivien, D., Macro, M., Bogdanowicz, P., Lebrun, E., andPujol, J. P. (1995): ‘Modulation of rabbit articular chondrocyte (RAC) proliferation by TGF-beta isoforms’,Cell. Prolif.,28, pp. 221–234Google Scholar
  5. Bradford, M. M. (1976): ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’,Anal. Biochem.,72, pp. 248–254CrossRefGoogle Scholar
  6. Bubel, S., Wilhelm, D., Entelmann, M., Kirchner, H., andKluter, H. (1996): ‘Chemokines in stored platelet concentrates’.Transfusion,36, pp. 445–449CrossRefGoogle Scholar
  7. Choi, Y. C., Morris, G. M., Lee, F. S., andSokoloff, L. (1980a): ‘The effect of serum on monolayer cell culture of mammalian articular chondrocytes’,Connect. Tissue Res.,7, pp. 105–112Google Scholar
  8. Choi, Y. C., Morris, G. M., andSokoloff, L. (1980b): ‘Effect of platelet lysate on growth and sulfated glycosaminoglycan synthesis in articular chondrocyte cultures’,Arthritis Rheum.,23, pp. 220–224Google Scholar
  9. Fujimoto, E., Ochi, M., Kato, Y., Mochizuki, Y., Sumen, Y., andIkuta, Y. (1999): ‘Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage’,Arch. Orthop. Trauma Surg.,119, pp. 139–145CrossRefGoogle Scholar
  10. Gillogly, S. D., Voight, M., andBlackburn, T. (1998): ‘Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation’,J. Orthop. Sports Phys. Ther.,28, pp. 241–251Google Scholar
  11. Grainger, D. J., Mosedale, D. E., Metcalfe, J. C., Weissberg, P. L., andKemp, P. R. (1995): ‘Active and acid-activatable TGF-beta in human sera, platelets and plasma’,Clin. Chim. Acta,235, pp. 11–31CrossRefGoogle Scholar
  12. Gruber, R., Sittinger, M., andBujia, J. (1996): ‘In vitro cultivation of human chondrocytes using autologous human serum supplemented culture medium: minimizing possible risk of infection with pathogens of prion diseases’,Laryngorhinootologie,75, pp. 105–108Google Scholar
  13. Guerne, P. A., Blanco, F., Kaelin, A., Desgeorges, A., andLotz, M. (1995): ‘Growth factor responsiveness of human articular chondrocytes in aging and development’,Arthritis Rheum.,38, pp. 960–968Google Scholar
  14. Guerne, P. A., Sublet, A., andLotz, M. (1994): ‘Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts’,J. Cell Physiol.,158, pp. 476–484.CrossRefGoogle Scholar
  15. Haisch, A., Groger, A., Radke, C., Ebmeyer, J., Sudhoff, H., Grasnick, G., Jahnke, V., Burmester, G. R., andSittinger, M. (2000): ‘Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation’,Biomaterials,21, pp. 1561–1566CrossRefGoogle Scholar
  16. Haisch, A., Schultz, O., Perka, C., Jahnke, V., Burmester, G. R., andSittinger, M. (1996): ‘Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers’,Hno,44, pp. 624–629.CrossRefGoogle Scholar
  17. Hart, C. E., Bailey, M., Curtis, D. A., Osborn, S., Raines, E., Ross, R., andForstrom, J. W. (1990): ‘Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets’,Biochemistry,29, pp. 166–172CrossRefGoogle Scholar
  18. Jakob, M., Demarteau, O., Schafer, D., Hintermann, B., Dick, W., Heberer, M., andMartin, I. (2001): ‘Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro’,J. Cell. Biochem.,81, 368–377CrossRefGoogle Scholar
  19. Klinger, M. H. (1997): ‘Platelets and inflammation’,Anat. Embryol. (Berl.),196, pp. 1–11CrossRefGoogle Scholar
  20. Mason, J. M., Breitbart, A. S., Barcia, M., Porti, D., Pergolizzi, R. G., andGrande, D. A. (2000): ‘Cartilage and bone regeneration using gene-enhanced tissue engineering’,Clin. Orthop., pp. S171–178Google Scholar
  21. Mayne, R., Vail, M. S., Mayne, P. M., andMiller, E. J. (1976): ‘Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity’,Proc. Nat. Acad. Sci. USA,73, pp. 1674–1678Google Scholar
  22. Mohle, R., Green, D., Moore, M. A., Nachman, R. L., andRafh, S. (1997): ‘Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets’,Proc. Nat. Acad. Sci. USA,94, pp. 663–668CrossRefGoogle Scholar
  23. Narczewska, B., Czyrski, J. A., andInglot, A. D. (1985): ‘Properties of purified bovine platelet-derived growth factor stimulating proliferation of human and mouse fibroblasts’,Can. J. Biochem. Cell. Biol.,63, pp. 187–194Google Scholar
  24. Puelacher, W. C., Kim, S. W., Vacanti, J. P., Schloo, B.,Mooney, D., andVacanti, C. A. (1994): ‘Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices’,Int. J. Oral Maxillofac. Surg.,23, pp. 49–53CrossRefGoogle Scholar
  25. Quatela, V. C., Sherris, R. N. andRosier, R. N. (1993): ‘The human auricular chondrocyte. Responses to growth factors’,Arch. Otolaryngol. Head Neck Surg.,119, pp. 32–37Google Scholar
  26. Rodriguez, A., Cao, Y. L., Ibarra, C., Pap, S., Vacanti, M., Eavey, R. D., andVacanti, C. A. (1999): ‘Characteristics of cartilage engineered from human pediatric auricular cartilage’,Plast. Reconstr. Surg.,103, pp. 1111–1119Google Scholar
  27. Ross, R., Glomset, J., Kariya, B., andRaines, E. (1978): ‘Role of platelet factors in the growth of cells in culture’,Natl. Cancer Inst. Monogr., pp. 103–108Google Scholar
  28. Rutherford, R. B., andRoss, R. (1976): ‘Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate’,J. Cell. Biol.,69, pp. 196–203CrossRefGoogle Scholar
  29. Sams A. E., andNixon, A. J. (1995): ‘Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects’,Osteoarthritis Cartilage,3, pp. 47–59Google Scholar
  30. Schultz, O., Keyszer, G., Zacher, J., Sittinger, M., andBurmester, G. R. (1997): ‘Development ofin vitro model systems for destructive joint diseases: novel strategies for establishing inflammatory pannus’,Arthritis Rheum.,40, pp. 1420–1428Google Scholar
  31. Selvaggi, T. A., Walker, R. E., andFleisher, T. A. (1997): ‘Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions’,Blood,89, pp. 776–779Google Scholar
  32. Sittinger, M., Bujia, J., Minuth, W. W., Hammer, C., andBurmester, G. R. (1994): ‘Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture’,Biomaterials,15, pp. 451–456CrossRefGoogle Scholar
  33. van Osch, G. J., van der Veen, S. W., Buma, P., andVerwoerd-Verhoef, H. L. (1998): ‘Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix’,Matrix Biol.,17, pp. 413–424Google Scholar
  34. Vivien, D., Galera, P., Lebrun, E., Loyau, G., andPujol, J. P. (1990): ‘Differential effects of transforming growth factor-beta and epidermal growth factor on the cell cycle of cultured rabbit articular chondrocytes’,J. Cell. Physiol.,143, pp. 534–545CrossRefGoogle Scholar
  35. Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., Owaki, H., andOno, K. (1989): ‘Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel’,Bone Joint Surg. Br.,71, pp. 74–80Google Scholar
  36. Weiser, L., Bhargava, M., Attia, E., Torzilli, P. A. (1999): ‘Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels’,Tissue Eng.,5, pp. 533–544Google Scholar
  37. Yang, S. Y., Ahn, S. T., Rhie, J. W., Lee, K. Y., Choi, J. H., Lee, B. J., andOh, G. T. (2000): ‘Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass’,Ann. Plast. Surg.,44, pp. 405–411Google Scholar

Copyright information

© IFMBE 2002

Authors and Affiliations

  • C. Kaps
    • 1
    • 4
  • A. Loch
    • 2
  • A. Haisch
    • 3
  • H. Smolian
    • 4
  • G. R. Burmester
    • 1
  • T. Häupl
    • 1
  • M. Sittinger
    • 1
  1. 1.Tissue Engineering Laboratory, Department of Rheumatology, CharitéMedical Faculty of Humboldt UniversityBerlinGermany
  2. 2.Department of Otorhinolaryngology, Head & Neck Surgery, Charité, Medical Faculty of Humboldt UniversityBerlinGermany
  3. 3.University Medical Centre Benjamin FranklinFree University BerlinBerlinGermany
  4. 4.TransTissue Technologies GmbHBerlinGermany

Personalised recommendations