Inter-chromosome texture as a feature for automatic identification of metaphase spreads

  • L. Vega-Alvarado
  • J. Márquez
  • G. Corkidi


This paper reports results for a new measure of texture coarseness, as a step towards automation of metaphase finding in cell-proliferation studies. This measure is highly specific to grey-level inter-chromosome coarseness features in microscopic images of metaphase spreads and allows the texture quantification of cytological objects, analysing the intensity profile between chromosome-extrema samples. Chromosome fragments produce patterns of pixels at low resolution, and the local neighbourhood of their individual extrema presents a characteristic coarseness along intensity profiles, on randomly oriented test lines. Results of the use of this new measure on microscope images of fields of metaphases and artifacts are compared with some representative texture measures and the performance of reported metaphase finders. This new measure outperforms the latter, when applied in metaphase detection and elimination of artifacts. This coarseness feature provides a specific metaphase signature that can be used in conjunction with other morphological and textural parameters for automated metaphase discrimination.


Metaphase finding Texture Image analysis Coarseness Profile Extrema 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arambula, F., Vega, L., Herrera, A., Prieto, R., andCorkidi, G. (2001): ‘Automatic identification of metaphase spreads and nuclei using neural networks’,Med. Biol. Eng. Comput.,39, pp. 391–396Google Scholar
  2. Castleman, K. R. (1992): ‘The PSI automatic metaphase finder’,J. Radiat. Res.,33, pp. 124–128Google Scholar
  3. Corkidi, G., Vega, L., Márquez, J., Rojas, E., andOstrosky-Wegman, P. (1998): ‘Roughness feature of metaphase chromosome spreads and nuclei for automated cell proliferation analysis’,Med. Biol. Eng. Comput.,36, pp. 679–685Google Scholar
  4. Galloway, M. (1975): ‘Texture analysis using gray level run lengths’,Comput. Graph. Image Process.,4, pp. 172–179Google Scholar
  5. Garza-Jinich, M., Rodriguez, C., Corkidi, G., Montero, R., Rojas, E., andOstrosky-Wegman, P. (1992): ‘A microcomputer-based supervised system for automatic scoring of mitotic index in citotoxicity studies’, inArchibald, C., andPetriu, E. (Eds): Advances in machine vision’, Vol. 32 (World Scientific Press Series on Computer Science, 1992), pp. 301–313Google Scholar
  6. Green, D., andNeurath, P. (1974): ‘The design, operation and evaluation of a high speed automatic metaphase finding’,J. Histochem. Cytochem.,22, pp. 531–535Google Scholar
  7. Haralick, R. (1979): ‘Statistical and structural approaches to texture’,Proc. IEEE,67, pp. 786–804Google Scholar
  8. Haralick, R., andShaphiro, L. (1992): ‘Computer and robot vision I' (Addison Wesley, 1992)Google Scholar
  9. Huber, R., Kulka, U., Lorch, T. H., Braselmann, H., Engert, D., Figel, M., andBauchinger, M. (2001): ‘Technical report: application of the Metafer 2 fluorescence scanning system for analysis of radiation-include chromosome aberration measured by FISH-chromosome painting’,Mutation Research,492, pp. 51–57Google Scholar
  10. Ito, K. (Ed.) (1996): ‘Encyclopedic dictionary of mathematics’, 2nd edn, Vol. II (MIT Press, 1996), article 396-C, p. 1469Google Scholar
  11. Jeacocke, M. B., andLovell, B. C. (1994): ‘A multi-resolution algorithm for cytological image segmentation intelligent information systems’. Proceedings of Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 322–326Google Scholar
  12. Johnson, F., andGoforth, L. (1974): ‘Metaphase spread detection and focus using closed circuit television’,J. Histochem. Cytochem.,22, pp. 536–545Google Scholar
  13. Ledley, R., Ruddel, F., andMigeon, B. (1963): ‘Computer analysis of chromosomes’, Proc. 16th Ann. Conf. Eng. Med. Biol.,5, pp. 166–167Google Scholar
  14. Lohmann, G. (1994): ‘Co-occurrence-based analysis and synthesis of textures’, Proceedings of 12th IAPR International Conference on Pattern Recognition,1, pp. 449–453Google Scholar
  15. Mclean, J. R., andJohnson, F. (1995): ‘Evaluation of a metaphase chromosome finder: potential application to chromosome-based radiation dosimetry’,Micron,26, pp. 489–492CrossRefGoogle Scholar
  16. Marquez, J. (1999): ‘Analysis and visualization of three dimensional complex structures: a boundary based approach’. PhD thesis, Department TSI, ENST, pp. 197–210Google Scholar
  17. Onural, L. (1991): ‘Generating connected textured fractal patterns using Markov random fields’,IEEE Trans. Pattern Anal. Mach. Intell.,13, pp. 819–825CrossRefGoogle Scholar
  18. Piper, J., Poggensee, M., Hill, W., Jensen, R., Ji, L., Poole, I., Stark, M., andSudar, D. (1994): ‘Automatic fluorescence metaphase finder speeds translocation scoring in FISH painted chromosomes’,Cytometry,16, pp. 7–16CrossRefGoogle Scholar
  19. Rees, D., andMuller, J.-P. (1990): ‘Surface roughness estimation using fractal variogram analysis’. 10th Annual International Geoscience and Remote Sensing Symposium, pp. 1951–1954Google Scholar
  20. Rojas, E., Montero, R., Herrera, L. A., Sordo, M., Gonsebatt, M. E., Rodriguez, R., andOstrosky-Wegman, P. (1992): ‘Are mitotic index and lymphocyte kinetic reproducible endpoints in genetic toxicology testing?’,Mutation. Res.,282, pp. 283–286Google Scholar
  21. Rosenfeld, A., andTroy, E. (1970): ‘Visual texture analysis’, Technical Report, University of Maryland, College Park, pp. 70–116Google Scholar
  22. Tang, X. (1998): ‘Texture information in run-length matrices’,IEEE Trans. Image Process.,7, pp. 1602–1609Google Scholar
  23. Vrolijk, J., Sloos, W. C., Darroudi, F., Natarajan, A. T., andTanke, H. J. (1994): ‘A system for fluorescence metaphase finding and scoring of chromosomal translocations visualized byin situ hybridisation’,Int. J. Radiat. Biol.,66, pp. 287–295Google Scholar
  24. Weber, J., Scheid, W., andTraut, H. (1992): ‘Time-saving in biological dosimetry by using the automatic metaphase, finder Metafer2’,Mutat. Res.,272, pp. 31–34Google Scholar

Copyright information

© IFMBE 2002

Authors and Affiliations

  1. 1.Instituto de Biotecnología-UNAMMorelosMéxico
  2. 2.Centro de Ciencias Aplicadas y Desarrollo Tecnológico-UNAMCiudad de MéxicoMéxico

Personalised recommendations