Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings

  • T. PenzelEmail author
  • J. McNames
  • P. de Chazal
  • B. Raymond
  • A. Murray
  • G. Moody


Sleep apnoea is a common disorder that is usually diagnosed through expensive studies conducted in sleep laboratories. Sleep apnoea is accompanied by a characteristic cyclic variation in heart rate or other changes in the waveform of the electrocardiogram (ECG). If sleep apnoea could be diagnosed using only the ECG, it could be possible to diagnose sleep apnoea automatically and inexpensively from ECG recordings acquired in the patient's home. This study had two parts. The first was to assess the ability of an overnight ECG recording to distinguish between patients with and without apnoea. The second was to assess whether the ECG could detect apnoea during each minute of the recording. An expert, who used additional physiological signals, assessed each of the recordings for apnoea. Research groups were invited to access data via the world-wide web and submit algorithm results to an international challenge linked to a conference. A training set of 35 recordings was made available for algorithm development, and results from a test set of 35 different recordings were made available for independent scoring. Thirteen algorithms were compared. The best algorithms made use of frequency-domain features to estimate changes in heart rate and the effect of respiration on the ECG waveform. Four of these algorithms achieved perfect scores of 100% in the first part of the study, and two achieved an accuracy of over 90% in the second part of the study.


Heart rate variability Sleep apnoea Physiologic signal database PhysioNet ECG Estimated respiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Academy of Sleep Medicine Task Force (1999): ‘Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research’,Sleep,22, pp. 667–689Google Scholar
  2. Ballora, M., Pennycook, B., Ivanov, P. C., Goldberger, A., andGlass, L. (2000): ‘Detection of obstructive sleep apnea through auditory display of heart rate variability’,Comput. Cardiol.,27, pp. 739–740Google Scholar
  3. De Chazal, P., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., andO'Malley, M. (2000): ‘Automatic classification of sleep apnea epochs using the electrocardiogram’,Comput. Cardiol.,27, pp. 745–748Google Scholar
  4. Dimsdale, J. E., Loredo, J. S., andProfant, J. (2000): ‘Effect of continous airway pressure on blood pressure’,Hypertension,35, pp. 144–147Google Scholar
  5. Drinnan, M. J., Murray, A., Griffiths, C. J., andGibson, G. J. (1998): ‘Interobserver variability in recognizing arousal in respiratory sleep disorders’,Am. J. Respir. Crit. Care Med.,158, pp. 358–362Google Scholar
  6. Drinnan, M. J., Allen, J., Langley, P., andMurray, A. (2000): ‘Detection of sleep apnoea from frequency analysis of heart rate variability’,Comput. Cardiol.,27, pp. 259–262Google Scholar
  7. Goldberger, A. L., Amaral, A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, I. E., Moody, G. B., Peng, C. K., andStanley, H. E. (2000): ‘Physiobank, Physiotoolkit, and Physionet’,Circulation,101, pp. e215-e220Google Scholar
  8. Guilleminault, C., Connolly, S. J., Winkle, R., Melvin, K., andTilkian, A. (1984): ‘Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms and usefulness of 24h electrocardiography as a screening technique’,The Lancet,I, pp. 126–131Google Scholar
  9. Hilton, M. F., Bates, R. A., Godfrey, K. R., Chappell, M. J., andCayton, R. M. (1999): ‘Evaluation of frequency and timefrequency spectral analysis of heart rate variability as a diagnostic marker or the sleep apnoea syndrome’,Med. Biol. Eng. Comput.,37, pp. 760–769Google Scholar
  10. Jarvis, M. R.,andMitra, P. P. (2000): ‘Apnea patients characterized by 0.02 Hz peak in the multitaper spectrogram of electrocardiogram signals’,Comput. Cardiol. 27, pp. 769–772Google Scholar
  11. Maier, C., Bauch, M., andDickhaus, H. (2000): ‘Recognition and quantification of sleep apnea by analysis of heart rate variability parameters’,Comput. Cardiol.,27, pp. 741–744Google Scholar
  12. Marchesi, C., Paoletti, M., andDi Gaetano, S. (2000): ‘Global waveform delineation for RR series estimation: detecting the sleep apnea pattern’Comput. Cardiol.-Abstracts, p. 71Google Scholar
  13. McNames, J. N., andFraser, A. M. (2000) ‘Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram’,Comput. Cardiol.,27, pp. 749–752Google Scholar
  14. Mietus, J. E., Peng, C. K., Ivanov, P. C., andGoldberger, A. L. (2000): ‘Detection of obstructive sleep apnea from cardiac interbeat interval time series’,Comput. Cardiol.,27, pp. 753–756Google Scholar
  15. Moody, G. B., Mark, R. G., Zoccola, A., andMantero, S. (1985): ‘Derivation of respiratory signals from multi-lead ECGs’,Comput. Cardiol.,12, pp. 113–116Google Scholar
  16. Moody, G. B., Mark R. G., Goldberger, A. L., andPenzel, T. (2000): ‘Stimulating rapid research advances via focused competition: the computers in cardiology challenge 2000’,Comput. Cardiol.,27, pp. 207–210Google Scholar
  17. Moody, G. B., Mark, R. G., andGoldberger, A. L. (2001): ‘PhysioNet: a web-based resource for the study of physiologic signals’,IEEE Eng. Med. Biol.,20, pp. 70–75Google Scholar
  18. Ng, F., Garcia, I., Gomis, P., La Cruz, A., Passariello, G., andMora, F. (2000): ‘Bayesian hierarchical model with wavelet transform coefficients of the ECG in obstructive sleep apnea screening’,Comput. Cardiol.,27, pp. 275–278Google Scholar
  19. Nieto, F. J., Young, T. B., Lind, B. K., Shahar, E., Samet, J. M., Redline, S., D'Agostino, R. B., Newman, A. B., Lebowitz, M. D., andPickering, T. G. (2000): ‘Association of sleepdisordered breathing, sleep apnea, and hypertension in a large community-based study’,J. Am. Med. Assoc.,283, pp. 1829–1836CrossRefGoogle Scholar
  20. Penzel, T., Amend, G., Meinzer, K., Peter, J. H., andVon Wichert, P. (1990): ‘Mesam: a heart rate and snoring recorder for detection of obstructive sleep apnea’,Sleep,13, pp. 175–182Google Scholar
  21. Penzel, T., Moody, G. B., Mark, R. G., Goldberger, A. L., andPeter, J. H. (2000): ‘The Apnea-ECG database’,Comput. Cardiol.,27, pp. 255–258Google Scholar
  22. Raymond, B., Cayton, R. M., Bates, R. A., andChappell, M. J. (2000): ‘Screening for obstructive sleep apnoea based on the electrocardiogram — the Computers in Cardiology Challenge’,Comput. Cardiol.,27, pp. 267–270Google Scholar
  23. Roche, F., Gaspoz, J. M., Court-Fortune, I., Minini, P., Pichot, V., Duverney, D., Costes, F., Lacour, J. R., andBarthélémy, J. C. (1999): ‘Screening of obstructive sleep apnea syndrome by heart rate variability analysis’,Circulation,100, pp. 1411–1415Google Scholar
  24. Schrader, M., Zywietz, C., von Einem V., Widiger, B., andJoseph, G. (2000): ‘Detection of sleep apnea in single channel ECGs from the PhysioNet data base’,Comput. Cardiol.,27, pp. 263–266Google Scholar
  25. Shinar, Z., Baharav, A., andAkselrod, S. (2000): ‘Obstructive sleep apnea detection based on electrocardiogram analysis’,Comput. Cardiol.,27, pp. 757–760Google Scholar
  26. Stein, P. K., andDomitrovich, P. P. (2000): ‘Detecting OSAHS from patterns seen on heart-rate tachograms’,Comput. Cardiol.,27, pp. 271–274Google Scholar
  27. Whitney, C. W., Gottlieb, D. J., Redline, S., Norman, R. G., Dodge, R. R., Shahar, E., Surovec, S.,andNieto, F. J. (1998): ‘Reliability of scoring respiratory disturbance indices and sleep staging’,Sleep,21, pp. 749–757Google Scholar
  28. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., andBadr, S. (1993): ‘The occurence of sleep-disorderd breathing among middle-aged adults’,New Engl. J. Med.,328, pp. 1230–1235CrossRefGoogle Scholar
  29. Young, T., Peppard, P., Palta, M., Hla, K. M., Finn, L., Morgan, B., andSkatrud, J. (1997): ‘Population-based study of sleep-disordered breathing as a risk factor for hypertension’,Arch. Intern. Med.,157, pp. 1746–1752CrossRefGoogle Scholar

Copyright information

© IFMBE 2002

Authors and Affiliations

  • T. Penzel
    • 1
    Email author
  • J. McNames
    • 2
  • P. de Chazal
    • 3
  • B. Raymond
    • 4
  • A. Murray
    • 5
  • G. Moody
    • 6
  1. 1.Department of Respiratory Critical Care MedicineHospital of Philipps UniversityMarburgGermany
  2. 2.Electrical & Computer EngineeringPortland State UniversityPortlandUSA
  3. 3.Department of Electronic & Electrical EngineeringUniversity CollegeDblinlreland
  4. 4.Department of Respiratory PhysiologyBirmingham Heartlands HospitalUK
  5. 5.Regional Medical Physics DepartmentFreeman HospitalNewcastle upon TyneUK
  6. 6.Harvard-MIT Division of Health Sciences & TechnologyCambridgeUSA

Personalised recommendations