Patch-clamping of primary cardiac cells with micro-openings in polyimide films

  • A. Stett
  • V. Bucher
  • C. Burkhardt
  • U. Weber
  • W. Nisch
Article

Abstract

Patch-clamping is a powerful method for investigating the function and regulation of ionic channels. Currently, great efforts are being made to automate this method. As a step towards this goal, the feasibility of patch-clamping primary cells with a microscopic opening in a planar substrate was tested. Using standard microfabrication and ion beam technology, small-diameter openings (2 and 4 μm) were formed in polyimide films (thickness 6.5 μm). Single cells (sheep Purkinje heart cells, Chinese hamster ovary cells) in a suspension were positioned on top of the opening and sucked towards the opening to improve adhesion of the cell to the planar substrate, hence increasing the seal resistance. Voltage/current measurements yielded a median seal resistance of 1.3MΩ with 4 μm openings (n=24) and 26.0 MΩ with 2 μm openings (n=75), respectively. With 2 μm openings, successful loose-patch recordings of TTX-sensitive inward currents and action potentials in sheep Purkinje heart cells (n=18) were made. In rare cases, gigaseals (n=4) were also measured, and a whole-cell configuration (n=1) could be established. It was concluded that the simple planar patch approach is suitable for automated loosepatch recordings from cells in suspension but will hardly be suitable for highthroughput whole-cell patch-clamping with high-resistance seals.

Keywords

High-throughput screening Ion channel Electrophysiology Patch-clamping Loose patch Automation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bove, M., Grattarola, M., andVerreschi, G. (1997): ‘In vitro 2-D networks of neurons characterized by processing the signals recorded with a planar microtransducer array’,IEEE Trans. Biomed. Eng.,44, pp. 964–977CrossRefGoogle Scholar
  2. Bove, M., Martinoia, S., Verreschi, G., Giugliano, M., andGrattarola, M. (1998): ‘Analysis of the signals generated by networks of neurons coupled to planar arrays of microtransducers in simulated experiments’,Biosens. Bioelectron.,13, pp. 601–612CrossRefGoogle Scholar
  3. Braun, D., andFromherz, P. (1998): ‘Fluorescence interferometry of neuronal cell adhesion on microstructured silicon’,Phys. Rev. Lett.,81, pp. 5241–5244Google Scholar
  4. Buitenweg, J. R., Rutten, W. L., Willems, W. P., andvan Nieuwkasteele, J. W. (1998): ‘Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy’,Med. Biol. Eng. Comput.,36, pp. 630–637Google Scholar
  5. Buitenweg, J. R., Rutten, W. L., andMarani, E. (2000): ‘Finite element modeling of the neuron-electrode interface’,IEEE Eng. Med. Biol. Mag.,19, pp. 46–52Google Scholar
  6. Buitenweg, J. R., Rutten, W. L., Marani, E., Polman, S. K., andUrsum, J. (2002): ‘Extracellular detection of active membrane currents in the neuron-electrode interface’,J. Neurosci. Methods,115, pp. 211–221CrossRefGoogle Scholar
  7. Corey, D. P., andStevens, C. F. (1983): ‘Science and technology of patch-recording electrodes’, inSakmann, B., andNeher, E. (Eds): ‘Single-channel recording’, (Plenum Press, New York, London, 1983), pp. 53–68Google Scholar
  8. Dixon, A. K., Richardson, P. J., Pinnock, R. D., andLee, K. (2000): ‘Gene-expresssion analysis at the single-cell level’,TiPS,21, pp. 65–70Google Scholar
  9. Fertig, N., Blick, R. H., andBehrends, J. C. (2002): ‘Whole cell patch clamp recording performed on a planar glass chip’,Biophys. J.,82, pp. 3056–3062Google Scholar
  10. Fromherz, P. (1999): ‘Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane’,Eur. Biophys. J.,28, pp. 254–258CrossRefGoogle Scholar
  11. Fromherz, P., andStett, A. (1995): ‘Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip’,Phys. Rev. Lett.,75, pp. 1670–1673CrossRefGoogle Scholar
  12. Glitsch, H. G., Krahn, T., andPusch, H. (1989): ‘The dependence of sodium pump current on internal Na concentration and membrane potential in cardioballs from sheep Purkinje fibres’,Pflügers Archiv.,414, pp. 52–58Google Scholar
  13. González, J. E., Oades, K., Leychkis, Y., Harootunian, A., andPinnock, R. D. (1999): ‘Cell-based assays and instrumentation for screening ion-channel targets’,Drug Discov. Today,4, pp. 431–439CrossRefGoogle Scholar
  14. Guia, A., Wang, X., Xu, J., Sithiphong, K., Yang, Z., Cui, C., Wu, L., Han, E., andXu, J. (2002): ‘Micro-positioning enabled patch clamp recordings on a chip’. Biophysical Society Meeting, San Francisco, CA, USA, pp. Abstract 787-PosGoogle Scholar
  15. Hamil, O. P., Marty, A., Neher, E., Sakmann, B., andSigworth, F. J. (1981): ‘Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches’,Pflügers Archiv.,406, pp. 73–82Google Scholar
  16. Johnston, P. A., andJohnston, P. A. (2002): ‘Cellular platforms for HTS: three case studies’,Drug Discov. Today,7, pp. 353–363Google Scholar
  17. Maher, M. P., Pine, J., Wright, J., andTai, Y. C. (1999): ‘The neurochip: a new multielectrode device for stimulating and recording from cultured neurons’,J. Neurosci. Methods,87, pp. 45–56CrossRefGoogle Scholar
  18. Mathes, C., Osipchuk, Y., Savtchenko, A., Yang, I., andA., B. (2001): ‘Whole-cell recordings from planar patch clamp electrodes: a step towards high-throughput electrophysiology’. Society for Biomolecular Screening 7th Annual Conference (Baltimore MD, USA), Abstract p. 5039Google Scholar
  19. Monyer, H., andLambolez, B. (1995): ‘Molecular biology and physiology at the single-cell level’,Curr. Opin. Neurobiol.,5, pp. 382–387CrossRefGoogle Scholar
  20. Neher, E. (1992): ‘Ion channels for communication between and within cells (Nobel Lecture)’,Neuron,8, pp. 605–612CrossRefGoogle Scholar
  21. Numann, R., andNegulescu, P. A. (2001): ‘High-throughput screening strategies for cardiac ion channels’,Trends Cardiovasc. Med.,11, pp. 54–59CrossRefGoogle Scholar
  22. Opsahl, L. R., andWebb, W. W. (1994): ‘Lipid-glass adhesion in giga-sealed patch-clamped membranes’,Biophys. J.,66, pp. 75–79Google Scholar
  23. Owen, D., andSilverthorne, A. (2002): ‘Channelling drug discovery. Current trends in ion channel drug discovery research’,Drug Discov. World,3, pp. 48–61Google Scholar
  24. Potter, S. M. (2001): ‘Distributed processing in cultured neuronal networks’,Prog. Brain Res.,130, pp. 49–62Google Scholar
  25. Rutten, W. L., Smit, J. P., Frieswijk, T. A., Bielen, J. A., Brouwer, A. L., Buitenweg, J. R., andHeida, C. (1999): ‘Neuro-electronic interfacing with multielectrode arrays’,IEEE Eng. Med. Biol. Mag.,18, pp. 47–55CrossRefGoogle Scholar
  26. Sakmann, B., andNeher, E. (1983): ‘Geometric parameters of pipettes and membrane patches’, inSakmann, B., andNeher, E. (Eds): ‘Single-channel recording’ (Plenum Press, New York, London, 1983), pp. 37–51Google Scholar
  27. Schmidt, C., Mayer, M., andVogel, H. (2000): ‘A chip-based biosensor for the functional analysis of single ion channels’,Angew. Chem. Int. Ed.,39, pp. 3137–3140Google Scholar
  28. Sigworth, F. J., andKlemic, K. G. (2002): ‘Patch clamp on a chip’,Biophys. J.,82, pp. 2831–2832Google Scholar
  29. Sorribas, H., Braun, D., Leder, L., Sonderegger, P., andTiefenauer, L. (2001): ‘Adhesion proteins for a tight neuronelectrode contact’,J. Neurosci. Methods,104, pp. 133–141CrossRefGoogle Scholar
  30. Stühmer, W., Roberts, W. M., andAlmers, W. (1983): ‘The loose patch clamp’, inSakmann, B., andNeher, E. (Eds): ‘Single-channel recording’ (Plenum Press, New York, London, 1983), pp. 123–132Google Scholar
  31. Weis, R., Muller, B., andFromherz, P. (1996): ‘Neuron adhesion on a silicon chip probed by an array of field-effect transistors’,Phys. Rev. Lett.,76, pp. 327–330CrossRefGoogle Scholar
  32. Xu, J., Wang, X., Ensign, B., Li, M., Wu, L., andGuia, A. (2001): ‘Ion-channel assay technologies: quo vadis?’,Drug Discov. Today,6, pp. 1278–1287CrossRefGoogle Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • A. Stett
    • 1
  • V. Bucher
    • 1
  • C. Burkhardt
    • 1
  • U. Weber
    • 1
  • W. Nisch
    • 1
  1. 1.NMI Natural & Medical Science InstituteReutlingenGermany

Personalised recommendations