Advertisement

Value and limitations of an inverse solution for two equivalent dipoles in localising dual accessory pathways

  • V. Jazbinŝek
  • R. Hren
  • G. Stroink
  • B. M. Horáĉek
  • Z. Trontelj
Article

Abstract

Investigations were carried out into whether an equivalent generator consisting of two dipoles could be used to detect dual sites of ventricular activity. A computer model of the human ventricular myocardium was used to simulate activation sequences initiated at eight different pairs of sites positioned on the epicardial surface of the atrio-ventricular ring. From these sequences, 117-lead body surface potentials (covering the anterior and posterior torso), 64-lead magnetic field maps (above the anterior chest) and 128-lead magnetic field maps (above the anterior and posterior chest) were simulated and were then used to localise dual accessory pathways employing pairs of equivalent dipoles. Average localisation errors were 12 mm, 12mm and 9mm, respectively, when body surface potentials, 64-lead and 128-lead magnetic fields were used. The results of the study suggest that solving the inverse problem for two dipoles could provide additional information on dual accessory pathways prior to electrophysiological study.

Keywords

Electrocardiography Magnetocardiography Two-dipole equivalent model Inverse solution Localisation Dual accessory pathways 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Guise, J., Gulrajani, R. M., Savard, P., Guardo, R. andRoberge, F. A. (1985): ‘Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model’,IEEE Trans. Biomed. Eng.,32, pp. 126–135Google Scholar
  2. Grogin, H. R., Stanley, M. L., Eisenberg, S. J., Horáĉek, B. M. andLesh, M. D. (1992): ‘Body surface mapping of accessory pathways in WPW syndrome’, inMurray, A., andArzbaecher, R. (Eds): ‘Computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, 1992), pp. 255–258Google Scholar
  3. Gulrajani, R. M., Roberge, F. A., andSavard, P. (1984): ‘Moving dipole inverse ECG and EEG solutions’,IEEE Trans. Biomed. Eng.,31, pp. 903–910Google Scholar
  4. Horáĉek, B. M. (1974): ‘Numerical models of inhomogeneous human torso’,Adv. Cardiol.,10, pp. 51–57Google Scholar
  5. Horáĉek, B. M., de Boer, R. G., Leon, L. J., andMontague, T. J. (1983): ‘Human epicardial potential distributions computed from body surface available data’, inHarumi, K., Yamada, K., andMusha, T. (Eds): ‘Advances in body surface potential mapping’ (University of Nagoya Press, Nagoya, 1983), pp. 47–54Google Scholar
  6. Horáĉek, B. M., andClements, J. C. (1997): ‘The inverse problem of electrocardiography: A solution in terms of single-and double-layer sources on the epicardial surface’,Math Biosci.,144, pp. 119–145MathSciNetGoogle Scholar
  7. Hren, R. (1996): ‘A realistic model of the human ventricular myocardium’. PhD thesis, Dalhousie University, HalifaxGoogle Scholar
  8. Hren, R., Stroink, G., andHoráĉek, B. M. (1998a): ‘Spatial resolution of body surface potential maps and magnetic field maps: A simulation study applied to the identification of ventricular preexcitation sites’,Med. Biol. Eng. Comp.,36, pp. 145–157.Google Scholar
  9. Hren, R., Stroink, G., andHoráĉek, B. M. (1998b): ‘Accuracy of single-dipole inverse solution when localising ventricular preexcitation sites: simulation study’,Med. Biol. Eng. Comp.,36, pp. 323–329Google Scholar
  10. Hren, R., andStroink, G. (2001): ‘Noninvasive characterisation of multiple ventricular events using electrocardiographic imaging’,Med. Biol. Eng. Comp.,39, pp. 447–454Google Scholar
  11. Leon, L. J., andHoráĉek, B. M. (1991): ‘Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements’,J. Electrocardiol.,24, pp. 1–15Google Scholar
  12. Lotjonen, J., Magnin, I. E., Nenonen, J., andKatila, T. (1999): ‘Reconstruction of 3-D geometry using 2-D profiles and a geo-metric prior model’,IEEE Trans. Med. Imaging,18, pp. 992–1002CrossRefGoogle Scholar
  13. Macchi, E., Arisi, G., andTaccardi, B. (1992): ‘Identification of ectopic ventricular foci by means of intracavitary potential mapping: a proposed method’,Acta Cardiol.,47, pp. 421–433Google Scholar
  14. Marquardt, D. W. (1963): ‘An algorithm for least-squares estimation of nonlinear parameters’,J. SIAM,11, pp. 421–433MathSciNetGoogle Scholar
  15. Marquardt, D. W. (1963): ‘An algorithm for least-squares estimation of nonlinear parameters’,J. SIAM,11, pp. 431–441zbMATHMathSciNetGoogle Scholar
  16. McClelland, J. H., Beckman, K. J., Wang, X., Hazlitt, H. A., Prior, M. I., Twidale, N., Moulton, K. P., Roman, C. A., Lazzara, R., andJackman, W. M. (1991): ‘Radiofrequency ablation elucidates accessory pathway anatomy’,Circulation,84, pp. II-24Google Scholar
  17. Mosher, J. C., Lewis, P. S., Leahy, R. M. (1992): ‘Multiple dipole modeling and localization from spatio-temporal MEG data’,IEEE Trans. Biomed. Eng.,39, pp. 541–557CrossRefGoogle Scholar
  18. Nenonen, J., Purcell, C. J., Horáĉek, B. M., Stroink, G., andKatila, T. (1991a): ‘Maghetocardiographic functional localization using a current dipole in a realistic torso’,IEEE Trans. Biomed. Eng.,38, pp. 658–664Google Scholar
  19. Nenonen, J., Edens, J. A., Leon, L. J., Horáĉek, B. M. (1991b): ‘Computer model of propagated excitation in the anisotropic human heart. I. Implementation and algorithms’, inMurray, A., andArzbaecher, R. (Eds): ‘Computers in cardiology’, (IEEE Computer Society Press, Los Alamitos, 1991), pp. 545–548Google Scholar
  20. Oostendorp, T. F., andvan Oosterom, A. (1989): ‘Source parameter estimation in inhomogeneous volume conductors of arbitrary shape’IEEE Trans. Biomed. Eng.,36, pp. 382–391CrossRefGoogle Scholar
  21. Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., andRudy, Y. (1997): ‘Noninvasive electrocardioghraphic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events’,Circulation,96, pp. 1012–1024Google Scholar
  22. Penney, C. J., Clements, J. C., andHoráĉek, B. M. (2000): ‘Noninvasive imaging of epicardial electrograms during controlled myocardial ischemia’, inMurray, A., andSwiryn, S. (Eds): ‘Computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, 2000), pp. 103–106Google Scholar
  23. Purcell, C., andStroink, G. (1991): ‘Moving dipole inverse solutions using realistic torso models’,IEEE Trans. Biomed. Eng.,38, pp. 82–84Google Scholar
  24. Ramanathan, C., andRudy, Y. (2001a): ‘Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials’,J. Cardiovasc. Electrophysiol.,12, pp. 229–240Google Scholar
  25. Ramanathan, C., andRudy, Y. (2001b): ‘Electrocardiographic imaging: I. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones’,J. Cardiovasc. Electrophysiol.,12, pp. 241–252Google Scholar
  26. Savard, P., Mailloux, G. E., Roberge, F. A., Gulrajani, R. M., andGuardo, R. (1982): ‘A simulation study of the single moving dipole representation of cardiac electrical activity’,IEEE Trans. Biomed. Eng.,29, pp. 700–707Google Scholar
  27. Singer, I. (1997): ‘Interventional electrophysiology’ (Williams and Wilkins, Baltimore, 1997)Google Scholar
  28. Taccardi, B., Macchi, E., Lux, R. L., Ershler, P. R., Spaggiari, S., Baruffi, S., andVyhmeister, Y. (1994): ‘Effect of myocardial fiber direction on epicardial potentials’,Circulation,90, pp. 3076–3090Google Scholar
  29. Trobec, R., Slivnik, B., Gersak, B., andGabrijelcic, T. (1998): ‘Computer simulation and spatial modeling in heart surgery’,Comput. Biol. Med.,28, pp. 393–403CrossRefGoogle Scholar
  30. Van't Ent, D., de Munck, J. C. andKaas, A. L. (2001): ‘A fast method to derive realistic BEM models for E/MEG source reconstruction’,IEEE Trans. Biomed. Eng.,48, pp. 1434–1443Google Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • V. Jazbinŝek
    • 1
  • R. Hren
    • 1
  • G. Stroink
    • 2
    • 3
  • B. M. Horáĉek
    • 3
    • 4
  • Z. Trontelj
    • 1
  1. 1.Institute of Mathematics, Physics & MechanicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of PhysicsDalhousie UniversityHalifaxCanada
  3. 3.School of Biomedical EngineeringDalhousie UniversityHalifaxCanada
  4. 4.Department of Physiology & BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations