Medical and Biological Engineering and Computing

, Volume 38, Issue 6, pp 680–685

Evaluation of renormalised entropy for risk stratification using heart rate variability data

  • N. Wessel
  • A. Voss
  • J. Kurths
  • A. Schirdewan
  • K. Hnatkova
  • M. Malik
Article

Abstract

Standard time and frequency parameters of heart rate variability (HRV) describe only linear and periodic behaviour, whereas more complex relationships cannot be recognised. A method that may be capable of assessing more complex properties is the non-linear measure of ‘renormalised entropy’. A new concept of the method, REAR, has been developed, based on a non-linear renormalisation of autoregressive spectral distributions. To test the hypothesis that renormalised entropy may improve the result of high-risk stratification after myocardial infarction, it is applied to a clinical pilot study (41 subjects) and to prospective data of the St George's Hospital post-infarction database (572 patients). The study shows that the new REAR method is more reproducible and more stable in time than a previously introduced method (p<0.001). Moreover, the results of the study confirm the hypothesis that on average, the survivors have negative values of REAR (−0.11±0.18), whereas the non-survivors have positive values (0.03±0.22, p<0.01). Further, the study shows that the combination of an HRV triangular index and REAR leads to a better prediction of sudden arrhythmic death than standard measurements of HRV. In summary, the new REAR method is an independent measure in HRV analysis that may be suitable for risk stratification in patients after myocardial infarction.

Keywords

Heart rate variability Renormalised entropy Risk stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberger, A. L., Rigney, D. R., Mietus, J., Antman, E. M., andGreenwald, S. (1988): ‘Nonlinear dynamics in sudden cardiac death syndrome: heartrate oscillations and bifurcations’,Experientia,44, pp. 983–987CrossRefGoogle Scholar
  2. Haykin, S. (1983): ‘Nonlinear methods of spectral analysis’ (Springer Verlag, Berlin), pp. 73–123.Google Scholar
  3. Klimontovich, Y. L. (1991): ‘Turbulent motion and structure of chaos’ (Kluwer Academic Publishers, Dordrecht)Google Scholar
  4. Kopitzki, K., Warnke, P. C. andTimmer, J. (1998): ‘Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy’,Phys. Rev. E. 58, pp. 4859–4864CrossRefGoogle Scholar
  5. Kurths, J., Voss, A., Witt, A., Saparin, P., Kleiner, H. J., andWessel, N., (1995): ‘Quantitative analysis of heart rate variability’,Chaos,5, pp. 88–94CrossRefGoogle Scholar
  6. Makikallio, T. H., Seppanen, T., Airaksinen, K. E., Koistinen, J., Tulppo, M. P., Peng, C. K., Goldberger, A. L., andHuikuri, H. V. (1997): ‘Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction’,Am. J. Cardiol.,80, pp. 779–783Google Scholar
  7. Saparin, P., Witt, A., Kurths, J., andAnishenko, V. (1994): ‘The renormalized entropy- an appropriate complexity measure’,Chaos Solitons Fractals,4, pp. 1907–1916CrossRefGoogle Scholar
  8. Schafer, C., Rosenblum, M. G., Kurths, J., andAbel, H. H. (1998): ‘Heartbeat synchronized with ventilation’,Nature,392, pp. 239–240Google Scholar
  9. Schreiber, T. (1997): ‘Detecting and analysing nonstationarity in a time series using nonlinear cross predictions’,Phys. Rev. Lett.,78, pp. 843–847CrossRefGoogle Scholar
  10. Task Force Europ. Soc. Cardiol. North Am. Soc. Pacing Electrophysiol. (1996): ‘Heart rate variability, standards of measurement, physiological interpretation, and clinical use’,Circulation,93, pp. 1043–1065Google Scholar
  11. Voss, A., Kurths, J., andFiehring, H. (1992): ‘Frequency domain analysis of the highly amplified ECG on basis of maximum entropy spectral estimation’,Med. Biol. Eng. Comput.,30, pp. 277–282Google Scholar
  12. Voss, A., Dietz, R., Fiehring, H., Kleiner, H. J., Kurths, J., Saparin, P., Vossing, H. J. andWitt, A. (1993): ‘High resolution ecg, heart rate variability and nonlinear dynamics: tools for high risk stratification’,Comput. Cardiol. pp. 261–264Google Scholar
  13. Voss, A., Kurths, J., Kleiner, H. J., Witt, A., Wessel, N., Saparin, P., Osterziel, K. J., Schurath, R., andDietz, R. (1996): ‘The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death’,Cardiovasc. Res.,31, pp. 419–433CrossRefGoogle Scholar
  14. Voss, A., Hnatkova, K., Wessel, N., Kurths, J., Sander, A., Schirdewan, A., Camm, A. J., andMalik, M. (1998): ‘Multiparametric analysis of heart rate variability used for risk stratification among survivors of acute myocardial infarction’,Pacing Clin. Electrophysiol.,21, pp. 186–192Google Scholar
  15. Wessel, N., Voss, A., Kurths, J., Saparin, P., Witt, A., Kleiner, H. J., andDietz, R. (1994): ‘Renormalised entropy: a new method of nonlinear dynamics for the analysis of heart rate variability’,Comput. Cardiol., pp. 137–140Google Scholar
  16. Wessel, N., Ziehmann, CH., Kurths, J., Meyerfeldt, U., Schirdewan, A., andVoss, A. (2000): ‘Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates’,Phys. Rev. E.,61, pp. 733–739CrossRefGoogle Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  • N. Wessel
    • 1
  • A. Voss
    • 2
  • J. Kurths
    • 1
  • A. Schirdewan
    • 3
  • K. Hnatkova
    • 4
  • M. Malik
    • 4
  1. 1.Nonlinear Dynamics Group, Institute of PhysicsUniversity of PotsdamPotsdamGermany
  2. 2.University of Applied SciencesJenaGermany
  3. 3.Franz-Volhard-HospitalHumboldt-UniversityBerlinGermany
  4. 4.St. George's HospitalMedical SchoolLondonUK

Personalised recommendations