Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy

Cellular Engineering: Tissue Engineering and Biomaterials

Abstract

Many substances are used in the production of biomaterials: metals (titanium), ceramics (alumina), synthetic polymers (polyurethanes, silicones, polyglycolic acid (PGA), polylactic acid (PLA), copolymers of lactic and glycolic acids (PLGA), polyanhydrides, polyorthoesters) and natural polymers (chitosan, glycosaminoglycans, collagen). With the rapid development in tissue engineering, these different biomaterials have been used as three-dimensional scaffolds and cell transplant devices. The principal biochemical and biological characteristics of the collagen-based biomaterials are presented, including their interactions with cells (fibroblasts), distinct from those of synthetic polymers, and their potential use in gene therapy through the formation of neo-organs or organoids.

Keywords

Biomaterials Collagen Tissue engineering Gene therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T. D., andSchor, S. L. (1983): ‘The contraction of collagen matrices by dermal fibroblasts’,J. Ultrast. Res.,83, pp. 205–219CrossRefGoogle Scholar
  2. Anselme, K., Petite, H., andHerbage, D. (1992). ‘Inhibition of calcification in vivo by acyl cross-linking of a collagen-glycosaminoglycan sponge’,Matrix,12, pp. 364Google Scholar
  3. Bell, E. (1995): ‘Deterministic models for tissue engineering’,Cell. Eng.,1, pp 28–34Google Scholar
  4. Bell, E., Ivarsson, B., andMerrill, C. (1979): ‘Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro’,Proc. Natl. Acad. Sci.,76, pp. 1274–1278Google Scholar
  5. Benghuzzi, H. (1996). ‘Cytological evaluation of capsular tissue surrounding TCPL implant in adult rats’,Biomed. Sci. Instrum.,32, pp. 81–86Google Scholar
  6. Berthod, F., Hayek, D., Damour, O., andCollombel, C. (1993): ‘Collagen synthesis by fibroblasts cultured within a collagen sponge’,Biomaterials,14, pp. 749–754CrossRefGoogle Scholar
  7. Bonnassar, L., andVacanti, Ch. (1998): ‘Tissue engineering: The first decade and beyond’,J. Cell. Biochem.,30/31, pp. 297–303Google Scholar
  8. Boyce, S. T., Christianson, D. J., andHansbrough J.F. (1988): ‘Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes’,J. Biomed. Mater: Res.,22, pp. 939–957CrossRefGoogle Scholar
  9. Cao, X., Wang, J., Zhang, W., Chen, G., Kong, X., andTani, K. (1995): ‘Treatment of human hepatocellular carcinoma by fibroblast-mediated human interferon alpha gene therapy in combination with adoptive chemoimmunotherapy’,J. Cancer Res. Clin. Oncol.,121, pp. 457–462Google Scholar
  10. Chevallay, B., Abdul-Malak, N., andHerbage, D. (2000): ‘Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: Influence of cross-linking with diphenylphosphorylazide on matrix reorganization, growth, biosynthetic and proteolytic activities’,J. Biomed. Mater: Res.,49, pp. 448–459CrossRefGoogle Scholar
  11. Cohen-Haguenauer, O. (1996). ‘Quelle technologie pour quelle pathologie?’,Biofutur. 162, pp. 11–17.Google Scholar
  12. Chen, B. F., Chang, W. C., Chen, S. T., Chen, D. S. andHwang, L. H. (1995). ‘Long-term expression of the biologically active growth hormone in genetically modified fibroblasts after implantation into a hypopysectomized rat’,Hum. Gene Ther.,6, pp. 917–926Google Scholar
  13. Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., andParmiani, G. (1991). ‘Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinomain vivo’,J. Exp. Med.,173 pp. 889–897CrossRefGoogle Scholar
  14. Cooperman, L., andMichaeli, D. (1984). ‘The immunogenicity of injectable collagen I. A 1-year prospective study’,J. Am. Acad. Dermatol.,10, pp. 638–646Google Scholar
  15. Cote, M. F., Sirois, E., andDoillon, C. J. (1992): ‘In vitro contraction rate of collagen in sponge-shape matrices’,J. Biomat. Sci. Polymer Edn.,3, pp. 301–313Google Scholar
  16. Danos, O., Moullier, P., andHeard, J. M. (1993): ‘Reimplantation de cellules genetiquement modifiees dans des neo-organes vascularises’,Medecine/Science,9, pp. 208–210Google Scholar
  17. Demetriou, A. A., Whiting, J. F., Feldman, D., Levenson, S. M., Chowdhury, N. R., Moscioni, A. D., Kram, M., andChowdhury, J. R. (1986): ‘Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes’,Science,233, pp. 1190–1192Google Scholar
  18. Doillon, C. J., Whyne, C. F., Brandwein, S., andSilver, F. H. (1986): ‘Collagen-based wound dressings: control of the pore structure and morphology’,J. Biomed. Mater. Res.,20, pp. 1219–1228CrossRefGoogle Scholar
  19. Doillon, C. J. (1988). ‘Porous collagen sponge wound dressings:in vivo andin vitro studies’,J. Biomat. Applic.,2, pp. 562–577Google Scholar
  20. Dwarki, V. J., Belloni, P., Nijar, T., Smith, J., Couto, L., andRabier, M. et al. (1995). ‘Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice’,Proc. Natl. Acad. Sci. USA,92, pp. 1023–1027Google Scholar
  21. Eckes, B., Mauch, C., Hÿppe, G., andKrieg, T. (1993): ‘Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms’,FEBS Lett.,318, pp. 129–133CrossRefGoogle Scholar
  22. Ehrlich, H. P. (1988): ‘The modulation of contraction of fibroblast populated collagen lattices by types I, II and III collagen’,Tiss. Cell,20, pp. 47–50CrossRefGoogle Scholar
  23. Ehrlich, H. P., Buttle, D. J., andBernanke, D. H. (1989): ‘Physiological variables affecting collagen lattice contraction by human dermal fibroblasts’,Exp. Mol. Pathol.,50, pp. 220–229CrossRefGoogle Scholar
  24. Ehrlich, H. P., Rockwell, W. B., Cornwell, T. L., andRajaratnam, B. M. (1991). ‘Demonstration of a direct role for myosin light chain kinase in fibroblast-populated collagen lattice contraction’J. Cell. Physiol.,146, pp. 1–7CrossRefGoogle Scholar
  25. Ehrmann, R. L. andGey, G. O. (1956): ‘The growth of cells on a transparent gel of reconstituted rat tail collagen’,J. Natl. Acad. Sci.,16, pp. 1375Google Scholar
  26. Ellingsworth, L. R., DeLustro, F., Brennan, J. E., Saamura, S., andMcPherson, J. (1986). ‘The human response to reconstituted bovine collagen’,J. Immunol.,136, pp. 877–882Google Scholar
  27. Gabrilovich, D. I., Cunningham, H. T., andCarbone, D. P. (1996): ‘IL-12 and mutant P53 peptide-pulsed dendritic cells for specific immunotherapy of cancer’,J. Immunother: Emphasis Tumor Immuno.,19, pp. 414–418Google Scholar
  28. Gillery, P., Serpier, H., Polette, M., Bellon, G., Glaver, C., Wegrowski, Y., Birembaut, P., Kalis, B., Cariou, R., andMaquart, F.X. (1992). ‘Gamma-interferon inhibits extracellular matrix synthesis and remodeling in collagen lattice cultures of normal and scleroderma skin fibroblasts’,Eur. J. Cell. Biol.,57, pp. 244–253Google Scholar
  29. Guidry, C., andGrinnell, F. (1987): ‘Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts’,J. Cell Biol.,104, pp. 1097–1103CrossRefGoogle Scholar
  30. Gullberg, D., Tingstrom, A., Thuresson, A. C., Olsson, L., Tetracio, L., Borg, T. K., andRubin, K. (1990): ‘Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF’,Exp. Cell Res.,186, pp. 264–272CrossRefGoogle Scholar
  31. Ho-Sung, L., Tsuchihashi, M., Tenshin, S. andKawata T. (1994): ‘Effect of retinoic acid on contraction of collagen gel induced by fibroblasts’,Biochem. Biophys. Res. Com.,205, pp. 455–459Google Scholar
  32. Huc, A. (1993): ‘Les biomateriaux a base de collagene’,Lyon Pharmaceutique,44, pp. 309–319Google Scholar
  33. Imamura, E., Sawatani, O., Koyanagi, H., Noishiki, Y., andMiyata, T. (1989): ‘Epoxy compounds as a new cross-linking agent for porcine aortic leaflets: subcutaneous implant studies in rats’,J. Card. Surg.,4, pp. 50–57Google Scholar
  34. Kahn, A. (1992): ‘Therapie genique’,Med. Sci. 8, pp. 3–33Google Scholar
  35. Khor, E. (1997): ‘Methods for treatment of collagenous tissues for bioprosthesis’,Biomaterials,18, pp. 95–105CrossRefGoogle Scholar
  36. Klein, C. E., Dressel, D., Steinmayerauch, C., Eckes, B., Krieg, T., Bankert, R. B., andWeber, L. (1991): ‘Integrinα 2β1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils’,J. Cell Biol.,115, pp. 1427–1436CrossRefGoogle Scholar
  37. Kleinmann, H. K., Rohrbach, D. H., Terranova, V. P., et al. (1982). ‘Collagenous matrices as determinants of cell function’ inFurthmayr, H. (Ed.). ‘Immunochemistry of the extracellular matrix, vol. 2’ (CRC Press, Boca Raton) pp. 151–174Google Scholar
  38. Klopper, P. J. (1986): ‘Collagen in surgical research’,Eur. Surg. Res.,18, pp. 218–223Google Scholar
  39. Lambert, C. A., Soudant, E. P., Nusgens, B. V., andLapiere, C. M. (1992): ‘Pretranscriptional regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces’,Lab. Invest.,66, pp. 444–451Google Scholar
  40. Langer, R., andVacanti, J. P. (1993): ‘Tissue engineering’,Science,260, pp. 920–926Google Scholar
  41. Langholz, O., Reckel, D., Mauch, C., Kozlowska, E., Bank, I., Krieg, T., andEckes, B. (1995): ‘Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated byα 2β1 andα 2β1 integrins’,J. Cell Biol.,131, pp. 1903–1915CrossRefGoogle Scholar
  42. Levy, R. J., Schoen, F. J., Sherman, F. S., Nichols, J., Hawley, M. A., andLund, S. A. (1986). ‘Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments’,Am. J. Pathol.,122, pp. 71–82Google Scholar
  43. McCoy, J. P., Schade, W. J., Siegle, R. J., Waldinger, T. P., Vanderveen, E. E., andSwanson, N. A. (1985). ‘Characterization of the humoral immune response to bovine collagen implants’,Arch. Dermatol.,121, pp. 990–994CrossRefGoogle Scholar
  44. McPherson, J. M. (1992): ‘The utility of collagen-based vehicles in delivery of growth factors for hard and soft tissue wound repair’,Clin. Mater.,9, pp. 225–234CrossRefGoogle Scholar
  45. Mauch, C., Hatamochi, A., Scharffetter, K., andKrieg, T. (1988). ‘Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel’,Exp. Cell Res.,178 pp. 493–503CrossRefGoogle Scholar
  46. Mauch, C., Adelmann-Grill, B., Hatamochi, A., andKrieg, T. (1989): ‘Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen’,FEBS Lett.,250, pp. 301–305CrossRefGoogle Scholar
  47. Middelkoop, E., De Vries, H. J. C., Ruuls, L., Everts, V., Wildevuur, C.H.R., andWesterhof, W. (1995). ‘Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges’,Cell Tissue Res.,280, pp. 447–453Google Scholar
  48. Miyata, T., Taria, T., andNoishiki, Y. (1992): ‘Collagen engineering for biomaterial use’,Clin. Mater.,9, pp. 139–148CrossRefGoogle Scholar
  49. Montesano, R., andOrci, L. (1988): ‘Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing’,Proc. Natl. Acad. Sci. USA,85, pp. 4894–4897Google Scholar
  50. Moullier, P., Marechal, V., Danos, O., andHeard, J. M. (1993): ‘Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts’Transplantation,56, pp. 427–432Google Scholar
  51. Naffakh, N., Henri, A., Villeval, J. L., Rouyer-Fessard, P., Moullier, P., Blumenfeld, N., Danos, O., Vainchenker, W., Heard, J. M., andBeuzard, Y. (1995). ‘Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts’,Proc. Natl. Acad. Sci. USA,92, pp. 3194–3198Google Scholar
  52. Nakagawa, S., Pawelek, P., andGrinnell, F. (1989a): ‘Longterm culture of fibroblasts in contracted collagen gels: effect on cell growth and biosynthetic activity’,J. Invest. Dermatol. 93, pp. 792–798CrossRefGoogle Scholar
  53. Nakagawa, S., Pawelek, P., andGrinnell, F. (1989b): ‘Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness’,Exp. Cell Res.,182, pp. 572–582CrossRefGoogle Scholar
  54. Nimni, M.E. (1997): ‘Polypeptide growth factors: targeted delivery system’,Biomaterials,18, pp. 1201–1225CrossRefGoogle Scholar
  55. Nishiyama, T., Tsunenaga, M., Nakayama, Y., Adachi, E., andHayashi, T. (1989): ‘Growth rate of human fibroblasts is repressed by the culture within reconstituted collagen matrix but not by the culture on the matrix’,Matrix,9, pp. 193–199Google Scholar
  56. Nusgens, B., Merrill, C., Lapiere, C., andBell, E. (1984): ‘Collagen biosynthesis by cells in a tissue equivalent matrix in vitro’,Collagen Rel. Res.,4, pp. 351–364Google Scholar
  57. O'Brien, T. K., Gabbay, S., Parkes, A. C., Knight, R. A., andZalesky, P. J. (1984): ‘Immunological reactivity to a new glutaradehyde tanned bovine pericardial heart valve’,Trans. Am. Soc. Artif. Intern. Organs,3, pp. 440–444Google Scholar
  58. Olde Damink, L. H. H. (1996): ‘Cross-linking of dermal sheep collagen using a water-soluble carbodiimide’,Biomaterials,17, pp. 765–773CrossRefGoogle Scholar
  59. Pachence, J. M., Berg, R. A., andSilver, F. H. (1987): ‘Collagen: its place in the medical device industry’,MD&DI,1, pp. 49–55Google Scholar
  60. Peterson, M. J., Kaplan, J., Jorgensen, C. M., Schmidt, L. A., Li L., andMorgan, J. R. et al. (1995): ‘Sustained production of human transferrin by transduced fibroblasts implanted into athymic mice: a model for somatic gene therapy’,J. Invest. Dermatol.,104, pp. 171–176Google Scholar
  61. Pette, H., Rault, I., Huc, A., Menasche, P., andHerbage, D. (1990). ‘Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium’,J. Biomed. Mater. Res.,24, pp. 179–187Google Scholar
  62. Petite, H., Frei, V., Huc, A., andHerbage, D. (1994): ‘Use of diphenylphosphorylazide for cross-linking collagen-based biomaterials’,J. Biomed. Mater: Res.,28, pp. 159–165Google Scholar
  63. Postlethwaite, A. E., Seyer, J. M., andKang, A. H. (1978): ‘Chemotactic attraction of human fibroblasts by type I, II and III collagens and collagen-derived peptides”,Proc. Natl. Acad. Sci. USA,75, pp. 871–875Google Scholar
  64. Ramshaw, J. A. M., Werkmeister, J. A., andGlattauer, V. (1995): ‘Collagen-based biomaterials’,Biotechnol. Genet. Eng. Rev.,13, pp. 335–382Google Scholar
  65. Rault, I., Frei, V., Herbage, D., Abdul-Malak, N., andHuc, A. (1996): ‘Evaluation of different chemical methods for cross-linking collagen gel, films and sponges’,J. Mater. Sci. Mater. Med.,7, pp. 215–221CrossRefGoogle Scholar
  66. Riikonen, T., Westermarck, J., Koivisto, L., Broberg, A., Kŝhŝri, V. M., andHeino, J. (1995). ‘Integrinα 2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression’,J. Biol. Chem.,270, pp. 13548–13552Google Scholar
  67. Rosenthal, F. M., andKohler, G. (1997): ‘Collagen as matrix for neo-organ formation by gene-transfected fibroblasts’,Anticancer Res.,17, pp. 1179–1186Google Scholar
  68. Schiro, J. A., Chan, B. M. C., Roswit, W. T., Kassner, P. D., Pentland, A. P., Hemter, M. E., Eisen, A. Z., andKupper, T. S. (1991). ‘Integrinα 2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells,Cell,67, pp. 403–410CrossRefGoogle Scholar
  69. Seltzer, J. L., Lee, A. Y., Akers, K. T., Sudbeck, B., Southon, E. A., Wayner, E. A., andEisen, A. Z. (1994): ‘Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction’,Exp. Cell Res. 213, pp. 365–374Google Scholar
  70. Suminami, Y., Elder, E. M., Lotze, M. T., andWhiteside, T. L. (1995): ‘In situ interleukin-4 gene expression in cancer patients treated with genetically modified tumor vaccine. Cancer’,J. Immunother: Emphasis Tumor Immuno.,17, pp. 238–248Google Scholar
  71. Tahara, H., Zitvoge, L., Storkus, W. J., Robbin, P. D., andLotze, M. T. (1996): ‘Murine models of cancer cytokine gene therapy using interleukine-12’,Ann. N Y Acad. Sci.,795, pp. 275–283Google Scholar
  72. Thompson, J. A., Haudenschild, C. C., Anderson, K. D., DiPietro, J. M., Anderson, W. F., andMaciag, T. (1989). ‘Heparin-binding growth factor 1 induces the formation of organoid neovascular structuresin vivo’,Proc. Natl. Acad. Sci. USA,86, pp. 7928–7932Google Scholar
  73. Timpl, R., andMartin, G. R. (1981): ‘Components of basement membranes’ inFurthmayr, H. (Ed.): ‘Immunochemistry of the extracellular matrix, vol. 2’ (CRC Press, Boca Raton), pp. 119–150Google Scholar
  74. Tiollier, J., Dumas, H., Tardy, M., andTayot, J. L. (1990): ‘Fibroblast behaviour on gels of type I, III and IV human placental collagens’,Exp. Cell Res.,191, pp. 95–104CrossRefGoogle Scholar
  75. Tomasek, J. J., andAkiyama, S. K. (1992): ‘Fibroblast-mediated collagen gel contraction does not require fibronectin-alpha 5 beta 1 integrin interaction’,Anat. Rec.,234, pp. 153–160CrossRefGoogle Scholar
  76. Tomasek, J. J., Halliday, N. L., Updike, D. L., Ahern-Moore, J. S., Vu, T. K. H., Liu, R. W., andHoward, E. W. (1997): ‘Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton’,J. Biol. Chem.,272, pp. 7482–7487Google Scholar
  77. Tuckwell, D.S., andHumphries, M. J. (1993) ‘Molecular and cellular biology of integrins’,Crit. Rev. Oncol. Hematol.,15, pp. 149–171Google Scholar
  78. Unemori, E. N., andWerb, Z. (1986): ‘Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels’,J. Cell Biol.,103, pp. 1021–1031CrossRefGoogle Scholar
  79. Weadock, K., Olsen, R. M., andSilver, R. H. (1984): ‘Evaluation of collagen crosslinking techniques’,Biomater. Med. Dev. Artif. Org.,11, pp. 294–318Google Scholar
  80. Werkmeister, J. A., andRamshaw, J. A. M. (1992): ‘Editorial: collagen-based biomaterials’,Clin. Mater.,9, pp. 137–138CrossRefGoogle Scholar
  81. Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W., Ahmed-Ansari, A., Sell, K. M., Pollard, J. W., andStanley E. R. (1990): ‘Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse’,Proc. Natl. Acad. Sci. USA 87, pp. 4828–4832Google Scholar
  82. Xu, J. andClark, R. A. F. (1997): ‘A three-dimensional collagen lattice induces protein kinase C-ξ activity: role in α2 integrin and collagenase mRNA expression’,J. Cell Biol.,136, pp. 473–483Google Scholar
  83. Yamato, M., Yamamoto, K., andHayashi, T. (1993): ‘Age-related changes in collagen gel contraction by cultured human lung fibroblasts resulting in cross-over of contraction curves between young and aged cells’,Mech. Ageing Dev.,67, pp. 149–158CrossRefGoogle Scholar
  84. Yamato, M., Adachi, E., Yamamoto, K., andHayashi, T. (1995): ‘Condensation of collagen fibrils to the direct vicinity of fibroblasts as a cause of gel contraction’,J. Biochem.,117, pp. 940–946Google Scholar
  85. Yannas, I. V., Burke, J. F., Orgill, D. P., andSkrabut, E. M. (1982): ‘Wound tissue can utilize a polymeric template to synthesise a functional extension of skin’,Science,215, pp. 174–176Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Institut de Biologie et Chimie des ProtéinesUPR 412 CNRSLyonFrance

Personalised recommendations