Medical and Biological Engineering and Computing

, Volume 43, Issue 4, pp 413–420

Position-sensing technologies for movement analysis in stroke rehabilitation

Article

Abstract

Research has focused on improvement of the quality of life of stroke patients. Gait detection, kinematics and kinetics analysis, home-based rehabilitation and telerehabilitation are the areas where there has been increasing research interest. The paper reviews position-sensing technologies and their application for human movement tracking and stroke rehabilitation. The review suggests that it is feasible to build a home-based telerehabilitation system for sensing and tracking the motion of stroke patients.

Keywords

Position sensing Motion tracking Human movement Rehabilitation Inertial sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminian, K., Robert, P., Buchser, E. E., Rutschmann, B., Hayoz, D., andDepairon, M. (1999): ‘Physical activity monitoring based on accelerometry: validation and comparison with video observation’,Med. Biol. Eng. Comput.,37, pp. 304–308Google Scholar
  2. Bachmann, E. R., McGhee, R. B., Yun, X., andZyda, M. J. (2001): ‘Inertial and magenetic posture tracking for inserting humans into networked virtual environments’.Proc. ACM Symposium on Virtual Reality Software & Technology Google Scholar
  3. Balogh, I., Orbaek, P., Ohlsson, K., Nordander, C., Unge, J., Winkel, J., andHansson, G. A. (2004): ‘Self-assessed and directly measured occupational physical activities — influence of musculoskeletal complaints, age and gender’,Appl. Ergon.,35, pp. 49–56CrossRefGoogle Scholar
  4. Barreiro, M. S., Frere, A. F., Theodorio, N. E. M., andAmate, F. C. (2003): ‘Goniometer based to computer’.Proc. 25 th Ann. Int. Conf. IEEE Eng. in Med. Biol. Soc., 17–21 Sept. 2003, Cancun, Mexico, pp. 3290–3293Google Scholar
  5. Bassett, D. R.,Ainsworth, B. E., andLeggett, S. R. (1996): ‘Accuracy of five electronic pedometers for measuring distance walked’,Med. Sci. Sports Exerc.,28, pp. 1071–1077Google Scholar
  6. Bassett, D. R., Cureton, A. L., andAinsworth, B. E. (2000): ‘Measurement of daily walking distance-questionnaire versus pedometer’,Med. Sci. Sports Exerc.,32, pp. 1018–1023Google Scholar
  7. Blomqvist, L., Stark, B., Engler, N., andMalm, M. (2004): ‘Evaluation of arm and shoulder mobility and strength after modified radical mastectomy and radiotherapy’,Acta Oncol.,43, pp. 280–283Google Scholar
  8. Bouten, C. V. C., Koekkoek, K. T. M., Verduim, M., Kodde, R., andJanssen, J. D. (1997): ‘A triaxial accelerometer and portable processing unit for the assessment daily physical activity’,IEEE Trans. Biomed. Eng.,44, pp. 136–147CrossRefGoogle Scholar
  9. Bussmann, H. B. J., Reuvekamp, P. J., andVeltink, P. H. (1998): ‘Validity and reliability of measurements obtained with an “activity monitor” in people with an without a transtibial amputation’,Phys. Therapy,78, pp. 989–998Google Scholar
  10. Campbell, K. L., Crocker, P. R., andMcKenie, D.C. (2002): ‘Field evaluation of energy expenditure in women using tritrac accelerometer’,Med. Sci. Sports Exerc.,34, pp. 1667–1674Google Scholar
  11. Clark, P. G., Dawson, S. J., Sheideman-Miller, C., andPost, M. L. (2002): ‘Telerehab: Stroke teletherapy and management using two-way interactive video’,Neurol. Rep.,26, pp. 86–92Google Scholar
  12. Croteau, K. A. (2004): ‘A preliminary study on the impact of a pedometer-based intervention on daily steps’,Am. J. Health Prom.,18, pp. 217–220Google Scholar
  13. Crouter, S. E., Schneider, P. L., Karabulut, M., andBassett, D. R. (2003): ‘Validity of 10 electronic pedometers for measuring steps, distance, and engergy cost’,Med. Sci. Sports Exerc.,35, pp. 1455–1460CrossRefGoogle Scholar
  14. Cyarto, E. V., Myers, A. M., andTudor-Locke, C. (2004): ‘Pedometer accuracy in nursing home and community-dwelling older adults’,Med. Sci. Sports Exerc.,36, pp. 205–209CrossRefGoogle Scholar
  15. Fahrenberg, J., Foerster, F., Smeja, M., andMuller, W. (1997): ‘Assessment of posture and motion by multichannel piezoresistive accelerometer recordings’,Psychophysiology,34, pp. 607–612Google Scholar
  16. Foerster, F., Smeja, M., andFahrenberg, J. (1999): ‘Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring’,Comput. Human Behav.,15, pp. 571–583Google Scholar
  17. Freedson, P. S., andMiller, K. (2000): ‘Objective monitoring of phsical activity using motion sensors and heart rate’,Res. Q. Exerc. Sport,71, pp. S21–29Google Scholar
  18. GLink:http://www.microstrain.com/ Google Scholar
  19. Goodwin, N., andSunderland, A. (2003): ‘Intensive, time-series measurement of upper limb recovery in the subacute phase following stroke’,Clin. Rehab.,17, pp. 69–82CrossRefGoogle Scholar
  20. Groves, D. (1988): ‘Beyond the pedometer — new tools for —monitoring activity’,Phys. Sports Med.,16, pp. 160–164Google Scholar
  21. Hansson, G. A., Balogh, I., Ohlsson, K., andSkerfving, S. (1996): ‘Goniometer measurement and computer analysis of wrist angles and movements applied to occupational repetitive work’,J. Electromyogr. Kinesiol.,6, pp. 23–35CrossRefGoogle Scholar
  22. Hansson, G. A., Balogh, I., Ohlsson, K., andSkerfving, S. (2004): ‘Measurements of wrist and forearm positions and movements: effect of, and compensation for, goniometer crosstalk’,J. Electromyogr. Kinesiol.,14, 355–367CrossRefGoogle Scholar
  23. Haynes, M. J., andEdmondston, S. (2002): ‘Accuracy and reliability of a new, protractor-based neck goniometer’,J. Manip. Physiol. Therap.,25, pp. 579–586Google Scholar
  24. HealthyPeople (2001):http://www.healthypeople.gov/document/ html/volumel/06disability.htm Google Scholar
  25. Hoodless, D. J., Stainer, K., Savic, N., Batin, P., Hawkins, M., andCowley, A. J. (1994): ‘Reduced customary activity in chronic heart-failure — assessment with a new shoe-mounted pedometer’,Int. J. Cardiol.,43, pp. 39–42CrossRefGoogle Scholar
  26. Johnson, P. W., Jonsson, P., andHagberg, M. (2002): ‘Comparison of measurement accuracy between two wrist goniometer systems during pronation and supination’,J. Electromyogr. Kinesiol.,12, pp. 413–420CrossRefGoogle Scholar
  27. Jonsson, P., andJohnson, P. W. (2001): ‘Comparison of measurement accuracy between two types of wrist goniometer systems’,Appl. Ergonom.,32, pp. 599–607Google Scholar
  28. Kalawsky, R. S. (1993): ‘The science of virtual reality and virtual environments’, (Addison-Wesley Wokingham, England, 1993)Google Scholar
  29. Kamen, G., Pattern, C., Du, C. D., andSison, S. (1998): ‘An accelerometry-based system for the assessment of balance and postural sway’,Gerontology,44, pp. 40–45CrossRefGoogle Scholar
  30. Kemp, B., Janssen, A. J. M. W., andvan der Kamp, B. (1998): ‘Body position can be monitored in 3d using miniature accelerometers and earth-magnetic field sensors’,Electro-encephalogr. Clin. Neuro-physiol./Electromyogr. Motor Control,109, pp. 484–488Google Scholar
  31. Kilanowski, C. K., Consalvi, A. R., andEpstein, L. H. (1999): ‘Validation of an electronic pedometer for measurement of physical activity in children’,Ped. Exer. Sci.,11, pp. 63–68Google Scholar
  32. Kochersberger, C. E., McConnel, E., Kuchibatla, M. N., andPieoer, C. (1996): ‘The reliability, validity, and stability of a measure of physical activity in the elderly’,Arch. Phys. Med. Rehabil.,77, pp. 793–795CrossRefGoogle Scholar
  33. Kuiken, T. A., Amir, H., andScheidt, R. A. (2004): ‘Computerized biofeedback knee goniometer: acceptance and effect on exercise behavior in post-total knee arthroplasty rehabilitation’,Arch. Phys. Med. Rehab.,85, pp. 1026–1030Google Scholar
  34. Le Masurier, G. C., andTudor-Locke, C. (2003): ‘Comparison of pedometer and accelerometer accuracy under controlled conditions’,Med. Sci. Sports Exerc.,35, pp. 867–871Google Scholar
  35. Leeders, N. Y., Sherman, W. M., Nagaraja, H. N., andKien, C. L. (2001): ‘Evaluation of methods to assess physical activity in free-living conditions’,Med. Sci. Sports Exerc.,33, pp. 1233–1240Google Scholar
  36. Ltters, J.,et al. (1998): ‘Design, fabrication and characterization of a highly symmetrical capacitive triaxial accelerometer’,Sensors Actuators A: Phys.,66, pp. 205–212Google Scholar
  37. Luinge, H. J. (2002): ‘Inertial sensing of human movement’, PhD thesis, University of TwenteGoogle Scholar
  38. Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W. Z., andBurgar, C. (2002): ‘Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance’,Top Stroke Rehabil,8, pp. 40–53Google Scholar
  39. Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2003): ‘Detection of daily physical activities using a triaxial accelerometer’,Med. Biol. Eng. Comput.,41, pp. 296–301Google Scholar
  40. Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2004a): ‘Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement’,Physiol. Meas.,25, pp. R1-R20CrossRefGoogle Scholar
  41. Mathie, M. J., Celler, B. G., Lovell, N. H., andCoster, A. C. (2004b): ‘Classification of basic daily movements using a triaxial accelerometer’,Med. Biol. Eng. Comput.,42, pp. 679–687CrossRefGoogle Scholar
  42. Mathie, M. J., Coster, A. C., Lovell, N. H., Celler, B. G., Lord, S. R., andTiedemann, A. (2004a): ‘A pilot study of long-term monitoring of human movements in the home using accelerometry’,J. Telemed. Telecare,10, pp. 144–51CrossRefGoogle Scholar
  43. McGorry, R. W., Chang, C., andDempsey, P. (2004): ‘A technique for estimation of wrist angular displacement in radial/ulnar deviation and flexion/ extension’,Int. J. Indust. Ergonom. 34, pp. 21–29Google Scholar
  44. MEDICATE:http://www.medicate online.org/ Google Scholar
  45. Melanson, E. L., Knoll, J. R., Melanie, L. B.,et al. (2004): ‘Commercially available pedometers: considerations for accurate step counting’,Prevent. Med.,39, pp. 361–368CrossRefGoogle Scholar
  46. Merryn, J. M., Coster, A. C. F., Lovell, N. H., andCeller, B. G. (2004): ‘Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement’,Physiol. Meas.,25, pp. R1-R20Google Scholar
  47. Miltner, H. R. W., Bauder, H. et al. (1999): ‘Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke’,Stroke,30, pp. 586–592Google Scholar
  48. Moe-Nilssen, R. (1998): ‘A new method for evaluating motor control in gait under reallife environmental conditions part 1: The instrument’,Clin. Biomech.,13, pp. 320–327Google Scholar
  49. MT9:http://www.xsens.com/ Google Scholar
  50. Mulder, A. G. E. (1994): ‘Human movement tracking technology’.Technical Report 94-1, Simon Fraser UniversityGoogle Scholar
  51. Ohtaki, Y., Sagawa, K., andInooka, H. (2001): ‘A method for gait analysis in a daily living environment by body-mounted instruments’,JSME Int. J. C., Mech. Syst. Mach. Elem. Manuf.,44, pp. 1125–1132Google Scholar
  52. Rawes, M. L., Richardson, J. B., andDias, J. J. (1996): ‘A new technique for the assesof wrist movement using biaxial fleaxible electrogoniometer’,J. Hand Surg.,21, pp. 600–603Google Scholar
  53. Reinkensmeyer, D., Lum, P., and Winters, J. (2004): ‘Emerging technologies for improving access to movement therapy following neurologic injury’.http://www.eng.uci.edu/dreinken/publications/ djr%20resna%20chapter.pdf Google Scholar
  54. Rossini, P. M., Calautti, C., Pauri, F., andBaron, J. C. (2003): ‘Post-stroke plastic reorganisation in the adult brain’,Lancet Neurol.,2, pp. 493–502Google Scholar
  55. Sagawa, K., Inooka, H., andSatoh, Y. (2000): ‘Non-restricted measurement of walking distance’,Proc. IEEE Int. Conf. On Systems, Man, and Cybernetics, 8–11 Oct. 20003, Nashville, TN, USA, pp. 1847–1852Google Scholar
  56. Schneider, P. L., Crouter, S. E., andBassett, D. R. (2004): ‘Pedometer measures of free-living physical activity: Comparison of 13 models’,Med. Sci. Sports Exerc.,36, pp. 331–335CrossRefGoogle Scholar
  57. Sellers, W. I., Varley, J., andWaters, S. (1998): ‘Remote locomotor monitoring using accelerometers: a pilot study’,Folia Primatologia,69, pp. 82–85Google Scholar
  58. Sequeira, M. M., Rickenbach, M., Wietlisbach, V., Tullen, B., andSchutzm, Y. (1995): ‘Physical-activity assessment using a pedometer and its comparison with a questionnaire in a large population survey’,Am. J. Epidem.,142, pp. 989–999Google Scholar
  59. Shepherd, E. F., Toloza, E., McClung, C. D., andSchmalzried, T. P. (1999): ‘Step activity monitor: Increased accuracy in quantifying ambulatory activity’,J. Orthop. Res.,17, pp. 703–708CrossRefGoogle Scholar
  60. Shiratsu, A., andCoury, H. J. C. G. (2003): ‘Reliability and accuracy of different sensors of a flexible electrogoniometer’,Clin. Biomech.,18, pp. 682–684CrossRefGoogle Scholar
  61. Skelly, M. M., andChizeck, H. J. (2001): ‘Real-time gait event detection for paraplegic fes walking’,IEEE Trans. Neural Syst. Rehabil. Eng.,9, pp. 59–68CrossRefGoogle Scholar
  62. SMART:http://hsc.shu.ac.uk/smart/?page=about Google Scholar
  63. Sderkvist, J. (1994): ‘Micromachined gyroscopes’,Sensors Actuators,43, pp. 65–71Google Scholar
  64. Sprigle, S., Flinn, M., Wootten, M., andMcCorry, S. (2003): ‘Development and testing of a pelvic goniometer designed to measure pelvic tilt and hip flexion’,Clin. Biomech.,18, pp. 462–465CrossRefGoogle Scholar
  65. Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., andHoward, J. (2003): ‘Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease’,J. Rehab. Res. Devel.,40, pp. 45–58Google Scholar
  66. Stroke:http://www.stroke.org.uk/noticeboard/obesity.htm Google Scholar
  67. Talbot, L. A., Gaines, J. M., Huynh, T. N., andMetter, E. J. (2003): ‘A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: A preliminary study’,J. Am. Geri. Soc.,51, pp. 387–392Google Scholar
  68. Taloy, P., Burridge, J.,et al. (1999): ‘Clinical audit of 5 years provision of the odstock dropped foot stimulator’,Artif. Organs. 23, pp. 440–442Google Scholar
  69. Tao, Y., andHu, H. (2003): ‘Building a visual tracking system for home-based rehabilitation’.Proc. 9th Chinese Automation and Computing Society Conf., UKGoogle Scholar
  70. Tudor-Locke, C., Ainsworth, B. E., Thompson, R. W., andMatthews, C. E. (2002): ‘Comparison of pedometer and accelerometer measures of free-living physical activity’,Med. Sci. Sports Exerc.,34, pp. 2045–2051CrossRefGoogle Scholar
  71. Tung, S. (2004): ‘Position paper: An overview of mems inertial sensors’,http://www.easasuedu/nsf2000/Table_of_Contents/STpdf Google Scholar
  72. Turner, J. W. (2001): ‘Telepsychiatry as a case study of presence: Do you know what you are missing?’,J. Comput. Mediat. Commun. 6, (4)Google Scholar
  73. Uiterwaal, M., Glerum, E. B. C., Busser, H. J., andVan Lummel, R. C. (1998): ‘Ambulatory monitoring of physical activity in working situations, a validation study’,J. Med. Eng. Technol. 22, pp. 168–172Google Scholar
  74. Veltink, P. H., Bussmann, H. B. J., de Vries, W., Martens, W. L. J., andVan Lummel, R. C. (1996): ‘Detection of static and dynamic activities using uniaxial accelerometers’,IEEE Trans. Rehabil. Eng.,4, pp. 375–385Google Scholar
  75. Walker, M. (2002): ‘Stroke rehabilitation’,Br. J. Cardiol.,9, pp. 23–30Google Scholar
  76. Walling, A. D. (2004): ‘Home-based rehabilitation improves function after stroke’,Am. Acad. Family Phys.,70 Google Scholar
  77. Welk, G. J., Differding, J. A., Thompson, R. W., Blair, S. N., Dziura, J., andHart, P. (2000): ‘The utility of the digi-walker step counter to assess daily physical activity patterns’,Med. Sci. Sports Exerc.,32S, pp. S481–488Google Scholar
  78. Williamson, R., andAndrews, B. J. (2000): ‘Gait event detection for fes using accelerometers and supervised maching learning’,IEEE Trans. Rehabil. Eng.,8, pp. 312–319CrossRefGoogle Scholar
  79. Winter, D. A. (1990): ‘Biomechanics and motor control of human movement, 2 edn’, (Wiley, New York, 1990)Google Scholar
  80. Yazdi, N., Ayazi, F., andNaja, K. (1998): ‘Micromachined inertial sensors (invited paper)’,Proc. IEEE,86, pp. 1640–1659CrossRefGoogle Scholar
  81. Zhou, H., andHu, H. (2004): ‘A survey — human movement tracking and a research proposal’.Smart Equal Project Report Google Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  1. 1.School of Computing & MathematicsUniversity of UlsterNewtownabbeyNorthern Ireland
  2. 2.Clinical MeasurementRoyal National Hospital for Rheumatic Diseases, Upper Borough WallsBathUK

Personalised recommendations