Nerve conduction block utilising high-frequency alternating current

  • K. L. KilgoreEmail author
  • N. Bhadra


High-frequency alternating current (AC) waveforms have been shown to produce a quickly reversible nerve block in animal models, but the parameters and mechanism of this block are not well understood. A frog sciatic nerve/gastrocnemius muscle preparation was used to examine the parameters for nerve conduction block in vivo, and a computer simulation of the nerve membrane was used to identify the mechanism for block. The results indicated that a 100% block of motor activity can be accomplished with a variety of waveform parameters, including sinusoidal and rectangular waveforms at frequencies from 2 kHz to 20 kHz. A complete and reversible block was achieved in 34 out of 34 nerve preparations tested. The most efficient waveform for conduction block was a 3–5 kHz constant-current biphasic sinusoid, where block could be achieved with stimulus levels as low as 0.01 μC phase−1. It was demonstrated that the block was not produced indirectly through fatigue. Computer simulation of high-frequency AC demonstrated a steady-state depolarisation of the nerve membrane, and it is hypothesised that the conduction block was due to this tonic depolarisation. The precise relationship between the steady-state depolarisation and the conduction block requires further analysis. The results of this study demonstrated that high-frequency AC can be used to produce a fast-acting, and quickly reversible nerve conduction block that may have multiple applications in the treatment of unwanted neural activity.


Conduction block Alternating current Depolarisation High frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Gawad, M., Boyer, S., Sawan, M., andElhilali, M. M. (2001): ‘Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs’,J. Urol.,166, pp. 728–733Google Scholar
  2. Accornero, N., Giorgio, B., Lenzi, G. L., andManfredi, M. (1977): ‘Selective activation of peripheral nerve fibre groups of different diameter by triangular shaped stimulus pulses’,J. Physiol.,273, pp. 539–560Google Scholar
  3. Agnew, W. F., McCreery, D. B., Yuen, T. G., andBullara, L. A. (1990): ‘Local anaesthetic block prevents against electrically-induced damage in peripheral nerve’,J. Biomed. Eng.,12, pp. 301–308Google Scholar
  4. Baratta, R., Ichie, M., Hwang, S. K., andSolomonow, M. (1989): ‘Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrodes’,IEEE Trans. Biomed. Eng.,36, pp. 836–843CrossRefGoogle Scholar
  5. Bowman, B. R., andMcNeal, D. R. (1986): ‘Response of single alpha motoneurons to high-frequency pulse trains’,Appl. Neurophysiol.,49, pp. 121–138Google Scholar
  6. Campbell, B., andWoo, M. Y. (1966): ‘Further studies on asynchronous firing and block of peripheral nerve conduction’,Bull. Los Ang. Neurol. Soc.,31, pp. 63–71Google Scholar
  7. Cattel, M., andGerard, R. W. (1935): ‘The ‘inhibitory’ effect of high-frequency stimulation and the excitation state of nerve’,J. Physiol.,83, pp. 407–415Google Scholar
  8. Fang, Z. P., andMortimer, J. T. (1991): ‘Selective activation of small motor axons by quasi-trapezoidal current pulses’,IEEE Trans. Biomed. Eng.,38, pp. 168–174Google Scholar
  9. Fields, R. W., O'Donnell, R. P., andTacke, R. B. (1979): ‘Effects of variations in rectangular pulse duty cycle and intensity on pulsating direct current electro-analgesia of cat tooth pulp’,Arch. Oral Biol.,24, pp. 509–514Google Scholar
  10. Forbes, A., andRice, L. H. (1929): ‘Quantitative studies of the nerve impulse IV. Fatigue of the peripheral nerve’,Am. J. Physiol.,90, pp. 119–145Google Scholar
  11. Grill, W. M., andMortimer, J. T. (1997): ‘Inversion of the current-distance relationship by transient depolarization’,IEEE Trans. Biomed. Eng.,44, pp. 1–9CrossRefGoogle Scholar
  12. Hassouna, M., Duval, F., Li, J. S., Latt, R., Sawan, M., andElhilali, M. M. (1992): ‘Effect of early bladder stimulation on spinal shock: experimental approach’,Urology,40, pp. 563–573CrossRefGoogle Scholar
  13. Hines, M. L., andCarnevale, N. T. (1997): ‘The NEURON simulation environment’,Neur. Comput.,9, pp. 1179–1209Google Scholar
  14. Huang, C. Q., Shepherd, R. K., Seligman, P. M., andClark, G. M. (1998): ‘Reduction in excitability of the auditory nerve following acute electrical stimulation at high stimulus rates: III. Capacitive versus non-capacitive coupling of the stimulating electrodes’,Hear. Res.,116, pp. 55–64CrossRefGoogle Scholar
  15. Huang, C. Q., andShepherd, R. K. (1999): ‘Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. IV. Effects of stimulus intensity’,Hear. Res.,132, pp. 60–68CrossRefGoogle Scholar
  16. Hurlbert, R. L., Tator, C. H., andTheriault, E. (1993): ‘Dose-response study of the pathological effects of chronically applied direct current stimulation on the normal rat spinal cord’,J. Neurosurg.,79, pp. 905–916Google Scholar
  17. Ishigooka, M., Hashimoto, T., Sasagawa, I., Izumiya, K. andNakada, T. (1994): ‘Modulation of the urethral pressure by high-frequency block stimulus in dogs’,Eur. Urol. 25, pp. 334–337Google Scholar
  18. Javel, E., Tong, Y. C., Shepherd, R. K., Clark, G. M. (1987): ‘Responses of cat auditory nerve fibers to biphasic electrical current pulses’,Ann. Otol. Rhinol. Laryngol. Suppl.,128, pp. 26–30Google Scholar
  19. Knedlitschek, G., Noszvai-Nagy, M., Meyer-Waarden, H., Schimmelpeeng, J., Weibezahn, K. F., andDertinger, H. (1994): ‘Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities’,Radiat. Environ. Biophys.,33, pp. 141–147CrossRefGoogle Scholar
  20. Krauthamer, V., andCrosheck, T. (2002): ‘Effects of high-rate electrical stimulation upon firing in modelled and real neurons’,Med. Biol. Eng. Comput.,40, pp. 360–366CrossRefGoogle Scholar
  21. Li, J. S., Hassouna, M., Sawan, M., Duval, F., andElhilali, M. M. (1995): ‘Long-term effect of sphincteric fatigue during bladder neurostimulation’,J. Urology,153, pp. 238–242Google Scholar
  22. McCreery, D. B., Agnew, W. F., Yuen, T. G., andBullara, L. (1990): ‘Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation’,IEEE Trans. Biomed. Eng.,37, pp. 996–1001CrossRefGoogle Scholar
  23. McCreery, D. B., Agnew, W. F., Yuen, T. G., andBullara, L. (1992): ‘Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms’,Med. Biol. Eng. Comput.,30, pp. 109–114Google Scholar
  24. McCreery, D. B., Agnew, W. F., Yuen, T. G. H., Bullara, L. A. (1995): ‘Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat’,Med. Biol. Eng. Comput.,33, pp. 426–429Google Scholar
  25. McIntyre, C. C., andGrill, W. M. (1998): ‘Sensitivity analysis of a model of mammalian neural membrane’,Biol. Cybern.,79, pp. 29–37CrossRefGoogle Scholar
  26. McIntyre, C. C., Richardson, A. G., andGrill, W. M. (2002): ‘Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle’,J. Neurophysiol.,87, pp. 995–1006Google Scholar
  27. McNeal, D. R. (1976): ‘Analysis of a model for excitation of myelinated nerve’,IEEE Trans. Biomed. Eng.,23, pp. 329–337Google Scholar
  28. Mitchell, A., Miller, J. J., Finger, P. A., Heller, J. W., Raphael, Y., andAltschuler, R. A. (1997): ‘Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig’,Hear. Res.,105, pp. 30–43CrossRefGoogle Scholar
  29. Mortimer, J. T. (1981): ‘Motor prostheses’, inBrookhart, J. M., Mountcastle, V. B., Brooks, V. B., andGeiger, S. R. (Eds): ‘Handbook of physiology, section 1: the nervous system—vol. II motor control, Part 1’ (Amer. Physiol. Soc., Bethesda, USA, 1981), Chap. 5, pp. 155–187Google Scholar
  30. Petruska, J. C., Hubscher, C. H., andJohnson, R. D. (1998): ‘Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei’,Exp. Brain Res.,121, pp. 379–390CrossRefGoogle Scholar
  31. Pudenz, R. H., Bullara, L. A., Jacques, S., andHambrecht, F. T. (1975): ‘Electrical stimulation of the brain. III. The neural damage model’,Surg. Neurol.,4, pp. 389–400Google Scholar
  32. Ranck, J. B., andBement, S. (1965): ‘The specific impedance of the dorsal columns of the cat: an anisotropic medium’,Exp. Neurol.,11, pp. 451–463CrossRefGoogle Scholar
  33. Ranck, J. B. (1975): ‘Which elements are excited in electrical stimulation of mammalian central nervous system: a review’,Brain Res.,98, pp. 417–440CrossRefGoogle Scholar
  34. Rattay, F. (1990): ‘Electrical nerve stimulation: theory, experiments and applications’, (Springer-Verlag, Wien, New York, 1990), pp. 183–185Google Scholar
  35. Reboul, J., andRosenblueth, A. (1939): ‘The action of alternating currents upon the electrical excitability of nerve’,Am. J. Physiol.,125, pp. 205–215Google Scholar
  36. Richardson, A. G., McIntyre, C. C., andGrill, W. M. (2000): ‘Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath’,Med. Biol. Eng. Comput. 38, pp. 438–446CrossRefGoogle Scholar
  37. Sassen, M., andZimmermann, M. (1973): ‘Differential blocking of myelinated nerve fibers by transient depolarization’,Pflugers Arch.,341, pp. 179–195CrossRefGoogle Scholar
  38. Sawan, M., Hassouna, M. M., Li, J. S., Duval, F., andElhilali, M. M. (1996): ‘Stimulator design and subsequent stimulation parameter optimization for controlling micturition and reducing urethral resistance’,IEEE Trans. Rehabil. Eng.,4, pp. 39–46CrossRefGoogle Scholar
  39. Shaker, H. S., Tu, L. M., Robin, S., Arabi, K., Hassouna, M., Sawan, M., andElhilali, M. M. (1998): ‘Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study’,J. Urol.,160, pp. 901–907Google Scholar
  40. Solomonow, M., Eldred, E., Lyman, J., andFoster, J. (1983): ‘Control of muscle contractile force through indirect high-frequency stimulation’,Am. J. Phys. Med.,62, pp. 71–82Google Scholar
  41. Solomonow, M. (1984): ‘External control of the neuromuscular system’,IEEE Trans. Biomed. Eng.,31, pp. 752–763Google Scholar
  42. Sweeney, J. D., andMortimer, J. T. (1986): ‘An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials’,IEEE Trans. Biomed. Eng.,33, pp. 541–549Google Scholar
  43. Tanner, J. A. (1962): ‘Reversible blocking of nerve conduction by alternating current excitation’,Nature,195, pp. 712–713Google Scholar
  44. Tykocinski, M., Shepherd, R. K., andClark, G. M. (1995): ‘Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates’,Hear. Res.,88, pp. 124–142CrossRefGoogle Scholar
  45. Warman, E. N., Grill, W. G., andDurand, D. (1992): ‘Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds’,IEEE Trans. Biomed. Eng.,39, pp. 1244–1254CrossRefGoogle Scholar
  46. Wedensky, N. E. (1903): ‘Die Erregung, Hemmung und Narkose’,Pfluger's Arch.,100, p. 1Google Scholar
  47. Whitman, J. G., andKidd, C. (1975): ‘The use of direct current to cause selective block of large fibres in peripheral nerves’,Br. J. Anaesth,47, pp. 1123–1132Google Scholar
  48. Williamson, R. (1999): ‘A new generation neural prosthesis’, PhD dissertation, University of Alberta, Edmonton, Alberta, CanadaGoogle Scholar
  49. Woo, M. Y., and Campbell, B. (1964): ‘Asynchronous firing and block of peripheral nerve conduction by 20 Kc alternating current’,Bull. Los Angeles Neurol. Soc.,29, pp. 87–94Google Scholar
  50. Yarowsky, P. J., andIngvar, D. H. (1981): ‘Neuronal activity and energy metabolism’,Fed. Proc.,40, pp. 2353–2362Google Scholar
  51. Yuen, T. G., Agnew, W. F., andBullara, L. A. (1984): ‘Histopathological evaluation of dog sacral nerve after chronic electrical stimulation for micturition’,Neurosurg.,14, pp. 449–455Google Scholar
  52. Zhou, B., Baratta, R., andSolomonow, M. (1987): ‘Manipulation of muscle force with various firing rates and recruitment control strategies’,IEEE Trans. Biomed. Eng.,34, pp. 128–139Google Scholar
  53. Zimmermann, M. (1968): ‘Selective activation of C-fibers’,Pflugers Archiv.,301, pp. 329–333Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  1. 1.MetroHealth Medical CenterClevelandUSA
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations