Advertisement

Analysis of amplitude and frequency variations of essential and Parkinsonian tremors

  • J. B. GaoEmail author
Article

Abstract

Variations in the amplitude and period of essential and Parkinsonian tremors were studied. It was found that the variations in frequency (or period) were mostly similar to the white noise, with the standard deviation typically less than 10% of the mean, whereas the variations in amplitude were much larger, with standard deviations greater than 30% of the mean, and so could not be effectively smoothed by running means. It is conjectured that variations in frequency reflect the stable nature of the neural network that generates the rhythmicity responsible for the tremor. The variations in amplitude, however, reflect more the fluctuations in the firing of individual neurons in the network. It is further discussed that the oscillator behind pathological tremor has a stochastic nature and can be characterised as a diffusional process. The latter suggests that it is sometimes possible for tremors to be described as chaotic processes on certain scales in phase space. It is further discussed how the stochastic nature of tremors determines the lack of correlation between different tremulous parts of the body.

Keywords

Pathological tremor Stochastic oscillator Variation in amplitude and period 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, P. (1996) ‘How nature works: the science of self-organized criticality’, (Copernicus, New York, 1996)Google Scholar
  2. Buckwell, D., andGresty, M. A. (1995): ‘Analysis of tremor waveform’, inFindley, L. J., andKoller, W. C. (Eds.): ‘Handbook of tremor disorders’ (Marcel Dekker, New York, 1995), pp. 145–164Google Scholar
  3. Chen, Y., Ding, M., andKelso, J. A. S. (1997): ‘Long memory processes (1/ftype) in human coordination’,Phys. Rev. Lett.,79, p. 4501Google Scholar
  4. Collins, J. J., andDe Luca, C. J. (1994): ‘Random walking during quiet standing’,Phys. Rev. Lett. 73, p. 764Google Scholar
  5. Deuschl, G., Bain, P., andBrin, M. (1998): ‘Consensus statement of the Movement Disorder Society on tremor’,Mov. Disord.,13, pp. 2–23CrossRefGoogle Scholar
  6. Elble, R. J., Higgins, C., Leffler, K., andHughes, L. (1994): ‘Factors influencing the amplitude and frequency of essential tremor’,Mov. Disord.,9, pp. 589–596Google Scholar
  7. Gao, J. B., Hwang, S. K., andLiu, J. M. (1999a): ‘When can noise induce chaos?’,Phys. Rev. Lett.,82, pp. 1132–1135Google Scholar
  8. Gao, J. B., Chen, C. C., Hwang, S. K., andLiu, J. M. (1999b): ‘Noise-induced chaos’,Int. J. Mod. Phys. B,13, pp. 3283–3305Google Scholar
  9. Gao, J. B., andTung, W. W. (2002): ‘Pathological tremors as diffusional processes’,Biol. Cybern.,86, pp. 263–270CrossRefGoogle Scholar
  10. Gao, J. B., Merk, I., Tung, W. W., Billock, V., White, K. D., Harris, J. G., andRoychowdhury, V. P. (2003): ‘Inertia and memory in ambiguous visual perception’,Proc. Royal Soc. London Series B (in press)Google Scholar
  11. Gilden, D. L., Thornton, T., andMallon, M. W. (1995): ‘1/f noise in human cognition’,Science,267, p. 1837Google Scholar
  12. Gresty, M., andBuckwell, D. (1990): ‘Spectral analysis of tremor-understanding the results’,J. Neurol. Neurosur. Psych.,53, pp. 976–981Google Scholar
  13. Hunker, C. J., andAbbs, J. H. (1990): ‘Uniform frequency of Parkinsonian resting tremor in the lips, jaw, tongue, and index finger’,Mov. Disord.,5, pp. 71–77CrossRefGoogle Scholar
  14. Hurtado, J. M., Gray, C. M., Tamas, L. B., andSigvardt, K. A. (1999): ‘Dynamics of tremor-related oscillations in the human globus pallidus: A single case study’,Proc. Nat. Acad. Sci. USA,96, pp. 1674–1679CrossRefGoogle Scholar
  15. Kaulakys, B., andMeskauskas, T. (1998): ‘Modeling 1/f noise’,Phys. Rev. E,58, pp. 7013–7019CrossRefGoogle Scholar
  16. Li, W., andKaneko, K. (1992): ‘Long-range correlation and partial 1/f-alpha spectrum in a non-coding DNA sequence’,Europhys. Lett.,17, pp. 655–660Google Scholar
  17. Mandelbrot, B. B. (1982):The fractal geometry of nature (Freeman, San Francisco, 1982)Google Scholar
  18. Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., andStanley, H. E. (1992): ‘Long-range correlations in nucleotide sequences’,Nature,356, pp. 168–170CrossRefGoogle Scholar
  19. Press, W. H. (1978): ‘Flicker noises in astronomy and elsewhere’,Comm. Astrophys.,7, pp. 103–119Google Scholar
  20. Raethjen, J., Lindemann, M., Schmaljohann, H., Wenzelburger, R., Pfister, G., andDeuschl, G. (2000): ‘Multiple oscillators are causing Parkinsonian and essential tremor’,Mov. Disord.,15, pp. 84–94CrossRefGoogle Scholar
  21. Timmer, J., Haussler, S., Lauk, M., andLucking, C. H. (2000): ‘Pathological tremors: deterministic chaos or nonlinear stochastic oscillators?’,Chaos,10, pp. 278–288CrossRefGoogle Scholar
  22. Voss, R. (1992): ‘Evolution of long-range fractal correlations and 1/fnoise in DNA base sequences’,Phys. Rev. Lett.,68, pp. 3805–3808CrossRefGoogle Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringUniversity of FloridaUSA

Personalised recommendations