Classification of breast tissue by electrical impedance spectroscopy

  • J. Estrela da Silva
  • J. P. Marques de Sá
  • J. Jossinet
Article

Abstract

Electrical impedance spectroscopy is a minimally invasive technique that has clear advantages for living tissue characterisation owing to its low cost and ease of use. The present paper describes how this technique can be applied to breast tissue classification and breast cancer detection. Statistical analysis is used to derive a set of rules based on features extracted from the graphical representation of electrical impedance spectra. These rules are used hierarchically to discriminate several classes of breast tissue. Results of statistical classification obtained from a data set of 106 cases representing six classes of excised breast tissue show an overall classification efficiency of ∼92% with carcinoma discrimination >86%.

Keywords

Impedance spectroscopy Tissue characterisation Data classification Discriminant analysis Breast cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, B. H., Barber, D. C., Morice, A. H., andLeathard, A. D. (1994). ‘Cardiac and respiratory related electrical impedance changes in the human thorax’,IEEE Trans. Biomed. Eng.,BME-41, pp. 729–734CrossRefGoogle Scholar
  2. Campbell, A. M., andLand, D. V. (1992): ‘Dielectric properties of female breast tissue measuredin vitro at 3.2 GHz’,Phys. Med. Biol.,37, pp. 193–210CrossRefGoogle Scholar
  3. Duda, R., andHart, P. (1973): ‘Pattern classification and scene analysis’ (Wiley, New York)Google Scholar
  4. Foley, D. H. (1972): ‘Considerations of sample and feature size’,IEEE Trans. Inform. Theory, IT-18, pp. 618–626CrossRefMATHGoogle Scholar
  5. Foster, K. R., andSchwan, H. P. (1989): ‘Dielectric properties of tissues and biological materials: a critical review’,CRC Crit. Reviews Biomed. Eng., 17, pp. 25–104Google Scholar
  6. Fukunaga, K. (1972). ‘Introduction to statistical pattern recognition’ (Academic Press, New York and London)Google Scholar
  7. Gersing, E., Schäfer, M., andOsypka, M. (1995): ‘The appearance of positive phase angles in impedance measurements on extended biological subjects’ in Proc. ‘CAIT Workshop on Electrode-Skin Interface in EIT’,Innov. Techn. Biol. Med.,16, (Special Issue 2), pp. 72–76Google Scholar
  8. Heinitz, J., andMinet, O. (1995): ‘Dielectric properties of female breast tumors’ in Proc. ‘9th Int. Conf. Electrical Bioimpedance’, (University of Heidelberg Press), pp. 356–359Google Scholar
  9. Henderson, R. P., andWebster, J. G. (1978). ‘An impedance camera for spatially specific measurements of the thorax’,IEEE Trans. Biomed. Eng., BME-27, pp. 250–254Google Scholar
  10. Jossinet, J. (1996): ‘Variability of impedivity in normal and pathological breast tissue’,Med. Biol. Eng. Comput.,34, pp. 346–350Google Scholar
  11. Jossinet, J. (1998): ‘The impedivity of freshly excised human breast tissue’,Physiol. Meas.,19, pp. 61–75CrossRefGoogle Scholar
  12. Jossinet, J., andLavandier, B. (1998): ‘The discrimination of excised cancerous breast tissue samples using impedance spectroscopy’Bioelectrochem. Bioenerg.,45, pp. 161–167CrossRefGoogle Scholar
  13. Kubicek, W. G., Patterson, R. P., andWitsoe, D. A. (1970): ‘Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system’,Ann. N.Y. Acad. Sciences,170, pp. 24–732Google Scholar
  14. Morimoto, T., Kinouchi, Y., Iritani, T., Kimura, S., Konishi, Y., Mitsuyama, N., Komaki, K., andMonden, Y. (1990): ‘Measurement of the electrical bio-impedance of breast tumors’,Eur. Surg. Res.,22, pp. 86–92Google Scholar
  15. Raudys, S., andPikelis, V. (1980): ‘On dimensionality, sample size, classification error and complexity of classification algorithm in pattern recognition’,IEEE Trans. Patt. Anal. Mach. Intel., PAMI-2, pp. 242–252Google Scholar
  16. Shapiro, S. S., Wilk, S. S., andChen, S. W. (1968): ‘A comparative study of various tests for normality’,J. Am. Stat. Ass.,63, pp. 1343–1372MathSciNetGoogle Scholar
  17. Swain, P. H. (1977): ‘The decision tree classifier: design and potential’,IEEE Trans. Geosci. Electronics, GE-15, pp. 142–147Google Scholar
  18. Schwan, H. P. (1959): ‘Alternating current spectroscopy of biological substances’,Proc. IRE,47, pp. 1841–1855Google Scholar
  19. Surowiec, A. J., Stuchly, S. S., Barr, J. R., andSwarup, A. (1988): ‘Dielectric properties of breast carcinoma and the surrounding tissues’,IEEE Trans. Biomed. Eng., BME-35, pp. 257–263CrossRefGoogle Scholar
  20. Tachibana, S., Aguilar, J. A., andBirzis, L. (1970): ‘Scanning the interior of living brain by impedography’,J. of Appl. Physiol.,28, pp.534–539.Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  • J. Estrela da Silva
    • 1
  • J. P. Marques de Sá
    • 1
  • J. Jossinet
    • 2
  1. 1.INEB (Instituto de Engenharia Biomédica)Faculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.INSERM (Institut National de la Santé et de la Recherche Médicale)LyonFrance

Personalised recommendations