Advertisement

Journal of Plant Research

, Volume 106, Issue 3, pp 195–200 | Cite as

Chemical composition of cell walls as a taxonomical marker

  • Hiroshi Takeda
Minireview

Abstract

Matrix sugar composition ofChlorella is species-specifically different. The rigid wall consists of either glucosamine or glucose and mannose. Ruthenium red stainability and anisotropy of cell wall are either plus or minus species-specifically. The cell wall is specifically degraded by the lytic enzyme of the cell itself.

Key words

Anisotropy Cell wall sugar composition Chemotaxonomy Chlorella Classification Lytic enzyme Rigid wall Ruthenium red 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertano, P., Pollio, A. andTaddei, R. 1991.Viridiella fridericiana (Chlorococcales, Chlorophyta). a new genus and species isolated from extremely acid environments. Physcologia30: 346–354.Google Scholar
  2. Araki, N. andTakeda, H. 1992. Species-specificity of the lytic activity of the cell wall in the genusChlorella. Physiol. Plant.85: 704–709.Google Scholar
  3. Beker, M.J. andShefner, A.M. 1964. Thin-layer and paper chromatographic analyses of the carbohydrates in the cell wall ofChlorella pyrenoidosa 7-11-05. Nature202: 803–804.Google Scholar
  4. Blumreisinger, M., Meindl, D. andLoos, E. 1983. Cell wall composition of Chlorococcal algae. Phytochem.22: 1603–1604.CrossRefGoogle Scholar
  5. Burczyk, J. 1987. Cell wall carotenoids in green algae which form sporopollenins. Phytochem.26: 121–128.Google Scholar
  6. Fott, B. andNováková, M. 1969. A monograph of the genusChlorella. The fresh water species.In Fott, B. [Ed.] Studies in Phycology, Academia, Prague, pp. 10–74.Google Scholar
  7. Hellmann, V. andKessler, E. 1974. Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. VIII. Die Basenzusammensetzung der DNS. Arch. Microbiol.95: 311–318.Google Scholar
  8. Huss, V.A.R., Dörr, R., Grossmann, V. andKessler, E. 1986. Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. I.Chlorella sorokiniana. Arch. Microbiol.145: 329–333.CrossRefGoogle Scholar
  9. Huss, V.A.R., Hehenberger, A. andKessler, E. 1987b. Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. III.Chlorella fusca andChlorella kessleri. Arch. Microbiol.149: 1–3.CrossRefGoogle Scholar
  10. Huss, V.A.R., Huss, G. andKessler, E. 1989a. Deoxyribonucleic acid reassociation and interspecies relationships of the genusChlorella (Chlorophyceae). Pl. Syst. Evol.168: 71–82.CrossRefGoogle Scholar
  11. Huss, V.A.R., Scharpf, T.K. andKessler, E. 1989b. Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. V.Chlorella vulgaris, C. luteovirides, C. minutissima andC. zofingiensis. Arch. Microbiol.152 512–514.CrossRefGoogle Scholar
  12. Huss, V.A.R., Schwarzwälder, E. andKessler, E. 1987a. Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. II.Chlorella saccharophila. Arch. Microbiol.147: 221–224.CrossRefGoogle Scholar
  13. Huss, V.A.R. andSogin, M.L. 1990. Phylogenetic position of someChlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. Mol. Evol.31: 432–442.CrossRefPubMedGoogle Scholar
  14. Huss, V.A.R., Wein, K.H. andKessler, E. 1988. Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. IV.Chlorella prothotecoides, and its relationship to the genusPrototheca. Arch. Microbiol.150: 509–511.CrossRefGoogle Scholar
  15. Iriki, Y. andMiwa, T. 1960. Chemical nature of the cell wall of the green algae.Codium, Acetabularia andHalicoryne. Nature185: 178–179.PubMedGoogle Scholar
  16. Iriki, Y., Suzuki, T., Nisizawa, K. andMiwa, T. 1960. Xylan of Siphonous green algae. Nature187: 82–83.PubMedGoogle Scholar
  17. Kalina, T. andPuncochárová, M. 1987. Taxonomy of the sub-familyScotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algol. Stud.45: 473–521.Google Scholar
  18. Kerfin, W. andKessler, E. 1978. Physiological and biochemical contributions to the taxonomy of the genusChlorella. XI. DNA hybridization. Arch. Microbiol.116: 97–103.PubMedGoogle Scholar
  19. Kessler, E. 1965. Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. I. Säureresistenz als taxonomische Merkmal. Arch. Mikrobiol.52: 291–296.CrossRefPubMedGoogle Scholar
  20. Kessler, E. 1972. Physiologische und biochemishe Beiträge zur Taxonomie der GattungChlorella. VII. Die Thermophilie vonChlorella vulgaris f. tertia. Fott et Novakova. Arch. Mikrobiol.87: 243–248.CrossRefPubMedGoogle Scholar
  21. Kessler, E. 1974. Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. IX. Salzresistenz als taxonomisches Merkmal. Arch. Microbiol.100: 51–56.CrossRefPubMedGoogle Scholar
  22. Kessler, E. 1976. Comparative physiology, biochemistry, and the taxonomy ofChlorella (Chlorophyceae). Plant Syst. Evol.125: 129–138.CrossRefGoogle Scholar
  23. Kessler, E. 1978. Physiological and biochemical contributions to the taxonomy of the genusChlorella. XII. Starch hydrolysis and a key for the identification of 13 species. Arch. Microbiol.119: 13–16.CrossRefGoogle Scholar
  24. Kessler, E. 1982. Chemotaxonomy in the Chlorococcales.In Round, F.E. & Chapman, D.J. [Eds.] Progress in Phycological Research, Vol. 1. Elsevier, Amsterdam, pp. 111–135.Google Scholar
  25. Kessler, E. 1984. A general review on the contribution of chemotaxonomy to the systematics of green algae. Systematics Association, Special. Vol. 27. Academic press, London, pp. 391–407.Google Scholar
  26. Kessler, E. 1985a. An extremely cadmium-sensitive strain ofChlorella. Experientia41: 1621.CrossRefGoogle Scholar
  27. Kessler, E. 1985b. Upper limit of temperature for grwoth inChlorella (Chlorophyceae). Pl. Syst. Evol.151: 67–71.Google Scholar
  28. Kessler, E. 1986. Limits of growth of fiveChlorella species in the presence of toxic heavy metals. Algol. Stud.42: 123–128.Google Scholar
  29. Kessler, E. 1987. Separation ofChlorella ellipsoidea fromC. saccharophila (Chlorophyceae): no growth on mannitol and cadmium sensitivity. Pl. Syst. Evol.157: 247–251.CrossRefGoogle Scholar
  30. Kessler, E. 1992.Chlorella. Biochemische Taxonomie einer für Forschung und Biotechnologie wichtigen Gattung einzelliger Grünalgen. Naturwissenschaften79: 260–265.CrossRefGoogle Scholar
  31. Kessler, E. andHuss, V.A.R. 1992. Comparative physiology and biochemistry and taxonomic assignment of theChlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. J. Phycol.28: 550–553.Google Scholar
  32. Kessler, E., Langner, W., Ludewig, I. andWiechmann, H. 1963. Bildung von Sekundär-Carotinoiden bei Stickstoff Mangel und Hydrogenase-Aktivität als Taxonomische Merkmale in der GattungChlorella.In Japanese Society of Plant Physiologists [Ed.] Microalgae and Photosynthetic Bacteria. University of Tokyo press, Tokyo, pp. 7–20.Google Scholar
  33. Kessler, E. andSoeder, C.J. 1962. Biochemical contributions to the taxonomy of the genusChlorella. Nature194: 1096–1097.Google Scholar
  34. Kessler, E. andZweier, I. 1971. Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. V. Die auxotrophen und mesotrophen Arten. Arch. Mikrobiol.79: 44–48.CrossRefGoogle Scholar
  35. Kümmel, H. andKessler, E. 1980. Physiological and biochemical contributions to the taxonomy of the genusChlorella. XIII. Serological studies. Arch. Microbiol.126: 15–19.CrossRefGoogle Scholar
  36. Loos, E. andMeindl, D. 1982. Composition of the cell wall ofChlorella fusca. Planta156: 270–273.CrossRefGoogle Scholar
  37. Miyachi, S., Nakayama, O., Yokohama, Y., Hara, Y., Ohmori, M., Komagata, K., Sugawara, H. andUgawa, Y. 1989. World Catalogue of Algae. 2nd Ed. Japan Scientific Societies Press, Tokyo.Google Scholar
  38. Northcote, D.H., Goulding, K.J. andHorne, R.W. 1958. The chemical composition and structure of the cell wall ofChlorella pyrenoidosa. Biochem. J.70: 391–397.PubMedGoogle Scholar
  39. Parker, B.C. 1970. Significance of cell wall chemistry to phylogeny in the algae. Ann. N.Y. Acad. Sci.175: 417–428.Google Scholar
  40. Punčochářová, M. andKalina, T. 1981. Taxonomy of the genusScotiellopsis Vinatzer (Chlorococcales, Chlorophyta). Algol. Stud.27: 119–147.Google Scholar
  41. Rogers, H.J. andPerkins, H.R. 1968. Cell walls and membranes. F. & F.N. Spon Ltd., London.Google Scholar
  42. Schlösser, U.G. 1982. Sammlung von Algenkulturen. Ber. Dtsch. Bot. Ges.95: 181–276.Google Scholar
  43. Shihira, I. andKrauss, R.W. 1965.Chlorella, Physiology and taxonomy of forty-one isolates. University of Maryland. Maryland.Google Scholar
  44. Skoda, B. 1992. Contributions to the biochemical taxonomy of the genusChlorella Beijerinck sensu lato-Pigment composition. 1. Cultures growing under optimal conditions. Algol. Stud.63: 19–35.Google Scholar
  45. Soeder, C.J. 1963. Weitere Zellmorphologische und physiologische Merkmale vonChlorella-Arten.In Japanese society of plant physiologists [Eds.] Microalgae and Photosynthetic Bacteria. University of Tokyo press, Tokyo pp. 21–34.Google Scholar
  46. Starr, R.C. 1971. Algal culture-sources and methods of cultivation.In San Pietro, A. [Ed.]Methods in Enzymology, Vol. 23B. Academic press, New York, pp. 29–53.Google Scholar
  47. Starr, R.C. andZeikus, J.A. 1987. UTEX-The culture collection of algae at the University of Texas at Austin. J. Phycol.23 (Suppl.): 1–47.Google Scholar
  48. Takeda, H. 1988a. Classification ofChlorella strains by means of the sugar components of the cell wall. Biochem. Syst. Ecol.16: 367–371.Google Scholar
  49. Takeda, H. 1988b. Classification ofChlorella strains by cell wall sugar composition. Phytochem.27: 3823–3826.CrossRefGoogle Scholar
  50. Takeda, H. 1991. Sugar composition of the cell wall and the taxonomy ofChlorella (Chlorophyceae). J. Phycol.27: 224–232.CrossRefGoogle Scholar
  51. Takeda, H. andHirokawa, T. 1978. Studies on the cell wall ofChlorella. I. Quantitative changes in cell wall polysaccharides during the cell cycle ofChlorella ellipsoidea. Plant Cell Physiol.19: 591–598.Google Scholar
  52. Takeda, H. andHirokawa, T. 1979. Studies on the cell wall ofChlorella II. Mode of increase of glucosamine in the cell wall during the synchronous growth ofChlorella ellipsoidea. Plant Cell Physiol.20: 989–991.Google Scholar
  53. Takeda, H. andHirokawa, T. 1984. Studies on the cell wall ofChlorella V. Comparison of the cell wall chemical compositions in strains ofChlorella ellipsoidea.Plant Cell Physiol. 25: 287–295.Google Scholar
  54. Vinayakumar, M. andKessler, E. 1975. Physiological and biochemical contributions to the taxonomy of the genusChlorella. X. Products of glucose fermentation. Arch. Microbiol.103: 13–19.CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan 1993

Authors and Affiliations

  • Hiroshi Takeda
    • 1
  1. 1.Department of Biology, College of General EducationNiigata UniversityNiigataJapan

Personalised recommendations