Journal of Plant Research

, Volume 109, Issue 2, pp 169–176 | Cite as

Chloroplast DNA phylogeny of subtribe Dendrobiinae (Orchidaceae): Insights from a combined analysis based onrbcL sequences and restriction site variation

  • Tomohisa Yukawa
  • Hideaki Ohba
  • Kenneth M. Cameron
  • Mark W. Chase
Original Articles


Phylogenetic analyses using two chloroplast DNA data sets, derived from variation of the ribulose-bisphosphate carboxylase gene (rbcL) and restriction sites, were performed to examine relationships among 13 taxa in subtribe Dendrobiinae, one of the most taxonomically complicated groups in Orchidaceae, and its putative sister groups. Owing to a limited number of informative substitutions, therbcL data set did not provide conclusive evidence in itself. The data set combiningrbcL and restriction site mutations, however, provided the following insights: (1)Pseuderia belongs with tribe Podochileae rather than tribe Dendrobieae. (2) Subtribe Dendrobiinae is monophyletic ifPseuderia is excluded. (3) ExcludingPseuderia, Dendrobiinae comprises three major clades: Clade 1 (Dendrobium sectionSpatulata, Cadetia, Diplocaulobium, andFlickingeria); Clade 2 (Dendrobium sectionsDendrobium andCallista); and Clade 3 (Epigeneium). (4)Epigeneium diverged early from the lineage including Clades 1 and 2. (5) Relative toCadetia, Diplocaulobium, andFlickingeria, Dendrobium is shown to be para-/polyphyletic. (6)Diplocaulobium andFlickingeria constitute a monophyletic clade, from which cladeDendrobium sectionSpatulata andCadetia form succesive sister groups. Among these results, (1) and (5) are especially stable in view of the congruence between the separate and combined analyses as well as robust internal support.

Key words

Chloroplast DNA Cladistics Dendrobium Molecular systematics Orchidaceae Ribulose bisphosphate carboxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, T. 1982. Experimental taxonomy of the genusDendrobium Swartz (Orchidaceae). I. Crossability of selected species in the sectionEugenanthe Schlechter. Tec. Bull. Fac. Hort. Chiba Univ.30: 1–6.Google Scholar
  2. Bentham, G. 1881. Notes on Orchideae. Jour. Linn. Soc. Bot.18: 281–360.Google Scholar
  3. Bentham, G. and Hooker, J.D. 1883. Genera Plantarum 3. London.Google Scholar
  4. Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution42: 795–803.Google Scholar
  5. Brieger, F.G. 1981. Subtribes Dendrobiinae.In F.G. Brieger, R. Maatsch and K. Senghas, eds., Schlechter, Die Orchideen, 3 ed., Paul Parey, Berlin, pp. 636–752.Google Scholar
  6. Burns-Balogh, P. andFunk, V.A. 1986. A phylogenetic analysis of the Orchidaceae. Smithonian Contrib. Bot.61: 1–79.Google Scholar
  7. Chase, M.W., andPalmer, J.D. 1989. Chloroplast DNA systematics of lilioid monocots: resources, feasibility, and an example from Orchidaceae. Amer. J. Bot.75: 1720–1730.Google Scholar
  8. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedrén, M., Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.-Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H., Graham, S.W., Barrett, S.C.H., Dayanandan, S. andAlbert, V.A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  9. Corriveau, J.L. andColeman, A.W. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer. J. Bot.75: 1443–1458.Google Scholar
  10. Doebley, J., Durbin, M., Golenberg, E.M., Clegg, M.T. andMa, D.P. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution44: 1097–1108.Google Scholar
  11. Donoghue, M.J. andSanderson, M.J. 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny.In P.S. Soltis, D.E. Soltis and J.J. Doyle, eds., Molecular Systematics of Plants, Chapman and Hall, New York, pp. 340–368.Google Scholar
  12. Dressler, R.L. 1981. The Orchids. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  13. Dressler, R.L. 1990. The major clades of the Orchidaceae-Epidendroideae. Lindleyana5: 117–125.Google Scholar
  14. Dressler, R.L. 1993. Phylogeny and Classification of the Orchid Family. Dioscorides Press, Portland.Google Scholar
  15. Dressler, R.L. andDodson, C.H. 1960. Classification and phylogeny in the Orchidaceae. Ann. Missori Bot. Gard.47: 25–68.Google Scholar
  16. Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool.27: 401–410.Google Scholar
  17. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.Google Scholar
  18. Finet, A. 1903. Enumeration des espèces du genreDendrobium. Bull. Mus. Nat. Hist. (Paris)9: 295–303.Google Scholar
  19. Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool.20: 406–416.Google Scholar
  20. Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M. andIwatsuki, K. 1994.rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. USA91: 5730–5734.PubMedGoogle Scholar
  21. Hashimoto, K. 1987. Karyomorphological studies of some 80 taxa ofDendrobium, Orchidaceae. Bull. Hiroshima Bot. Gard.9: 1–186.Google Scholar
  22. Kamemoto, H., Shindo, K. andKosaki, K. 1964. Chromosome homology in theCeratobium, Phalaenanthe, andLatourea sections of the genusDendrobium. Pacific Sci.18: 104–115.Google Scholar
  23. Kim, K.-J., Jansen, R.K., Wallace, R.S., Michaels, H.J. andPalmer, J.D. 1992. Phylogenetic implications ofrbcL sequence variation in the Asteraceae. Ann. Missouri Bot. Gard.79: 428–445.Google Scholar
  24. Kraenzlin, F. 1910. Orchidaceae-Monandrae-Dendrobiineae 1.In A. Engler, ed., Pflanzenreich, Heft 45, IV. 50 II B21, Wilhelm Engelmann, Leipzig, pp. 1–382.Google Scholar
  25. Lawler, L.J., Slaytor, M. and Done, J. 1971. Biochemical investigations of Australian Orchidaceae.In Proc. 6th World Orchid Conf. 1969, Sydney, pp. 51–54.Google Scholar
  26. Lindley, J. 1830. The Genera and Species of Orchidaceous Plants. London.Google Scholar
  27. Lüning, B. 1966. Chemotaxonomy in aDendrobium complex.In L.R. DeGarmo, ed., Proc. 5th World Orchid Conf. 1966, Long Beach, California, pp. 211–215.Google Scholar
  28. Maddison, D.R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool.40: 315–328.Google Scholar
  29. Olmstead, R.G. andPalmer, J.D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot.81: 1205–1224.Google Scholar
  30. Olmstead, R.G. andSweere, J.A. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol.43: 467–481.Google Scholar
  31. Palmer, J.D., Jansen, R.K., Michaels, H.L., Chase, M.W. andManhart, J.R. 1988. Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard.75: 1180–1206.Google Scholar
  32. Pfitzer, E. 1889. Orchidaceae.In A. Engler and K. Prantl, eds., Nat. Pflanzenfam, Berlin, pp. 172–175.Google Scholar
  33. Price, R.A. andPalmer, J.D. 1993. Phylogenetic relationships of the Geraniaceae and Geraniales fromrbcL sequence comparisons. Ann. Missouri Bot. Gard.248: 661–671.Google Scholar
  34. Reichenbach, H.G. 1861.Dendrobium.In W.G. Walpers, ed. Annales Botanices Systematicae, Leipzig, pp. 279–309.Google Scholar
  35. Sanderson, M.J. 1989. Confidence limits in phylogenies: the bootstrap revisited. Cladistics5: 113–129.Google Scholar
  36. Sang, T., Crawford, D.J., Kim, S.-C. andStuessy, T.F. 1994. Radiation of the endemic genusDendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS regions of nuclear ribosomal DNA. Amer. J. Bot.81: 1494–1501.Google Scholar
  37. Schlechter, R. 1912. Die Orchidaceen von Deutsch-Neu-Guinea. Repert. Spec. Nov. Regni Veg.1: 440–643.Google Scholar
  38. Schlechter, R. 1926. Das System der Orchidaceen. Notizbl. Bot. Gart. Berlin-Dahlem9: 563–591.Google Scholar
  39. Sears, B.B. 1980. Elimination of plastids during spermatogenesis and fertalization in the plant kingdom. Plasmid4: 233–255.CrossRefPubMedGoogle Scholar
  40. Shindo, K., andKamemoto, H. 1963. Chromosome numbers and genome relationships of some species in theNigrohirsutae section ofDendrobium. Cytologia28: 68–75.Google Scholar
  41. Smith, J.J. 1915. Die Orchideen von Niederländisch Neu Guinea 4b. Nova Guinea 12, livr.4: 273–477. Leiden.Google Scholar
  42. Soltis, D.E., Soltis, P.S., Clegg, M.T. andDurbin, M. 1990.rbcL sequence divergence and phylogenetic relationships in Saxifragaceaesensu lato. Proc. Natl. Acad. Sci. USA87: 4640–4644.PubMedGoogle Scholar
  43. Soltis, D.E., Morgan, D.R., Grable, A., Soltis, P.S. andKuzoff, R. 1993. Molecular systematics of Saxifragaceaesensu stricto. Amer. J. Bot.80: 1056–1081.Google Scholar
  44. Swofford, D.L. 1991. When are phylogeny estimates from molecular and morphological data incongruent?In M.M. Miyamoto and J. Cracraft, eds., Phylogenetic Analysis of DNA Sequences, Oxford University Press, New York, pp. 295–333.Google Scholar
  45. Swofford, D.L. 1993. PAUP- phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, Champaign.Google Scholar
  46. Swofford, D.L. andMaddison, W.P. 1987. Reconstructing ancestral character states under Wagner parsimony. Math. Biosci.87: 199–229.CrossRefGoogle Scholar
  47. Thammaslri, K., Tang, C.S., Yamamoto, H.Y. andKamemoto, H. 1986. Carotenoids and chlorophylls in yellow-flowered Dendrobium species. Lindleyana1: 215–218.Google Scholar
  48. Wilfret, G.J. andKamemoto, H. 1969. Genome and karyotype relationships in the genusDendrobium (Orchidaceae). I. Crossability. Amer. J. Bot.56: 521–526.Google Scholar
  49. Wilfret, G.J. andH. Kamemoto 1971. Genome and karyotype relationships in the genusDendrobium (Orchidaceae). II. Karyotype relationships. Cytologia36: 604–613.Google Scholar
  50. Wilfret, G.J., Takeshita, T. andKamemoto, H. 1979. Genome and karyotype relationships in the genusDendrobium (Orchidaceae). III. Meiotic behavior. J. Amer. Soc. Hort. Sci.104: 43–46.Google Scholar
  51. Xiang, Q.-Y., Soltis, D.E., Morgan, D.R. andSoltis, P.S. 1993. Phylogenetic relationships ofCornus L.sensu lato and putative relatives inferred fromrbcL sequence data. Ann. Missouri Bot. Gard.80: 723–734.Google Scholar
  52. Yukawa, T., Ando, T., Karasawa, K. and Hashimoto, K. 1991. Leaf surface morphology in selectedDendrobium species.In Proc. 13th World Orchid Conf. 1990, Auckland, pp. 250–258.Google Scholar
  53. Yukawa, T., Ando, T., Karasawa, K. andHashimoto, K. 1992. Existence of two stomatal shapes in the genusDendrobium (Orchidaceae) and its systematic significance. Amer. J. Bot.79: 946–952.Google Scholar
  54. Yukawa, T., Kurita, S., Nishida, M. andHasebe, M. 1993. Phylogenetic implications of chloroplast DNA restriction site variation in subtribe Dendrobiinae (Orchidaceae). Lindleyana8: 211–221.Google Scholar

Copyright information

© The Botanical Society of Japan 1996

Authors and Affiliations

  • Tomohisa Yukawa
    • 1
  • Hideaki Ohba
    • 1
  • Kenneth M. Cameron
    • 2
  • Mark W. Chase
    • 3
  1. 1.Department of Botany, University MuseumUniversity of Tokyo, 7-3-1 HongoTokyoJapan
  2. 2.Department of BiologyThe University of North CarolinaChapel HillUSA
  3. 3.Laboratory of Molecular Systematics, Jodrell LaboratoryRoyal Botanic GardensRichmondUK

Personalised recommendations