Journal of Plant Research

, Volume 109, Issue 3, pp 253–263 | Cite as

Protein kinases in elicitor signal transduction in plant cells

  • Kaoru Suzuki
  • Hideaki Shinshi


Plants have the ability to respond to pathogen invasion by specific defense reactions. Components of mammalian signal transduction chains have been identified in plants, and several lines of evidence have implicated such components in elicitor signal transmission in defense responses. In particular, it has been assumed that elicitor signals are transduced via a protein kinase cascade, although the identity of the protein kinases and the function of the phosphorylated proteins remain to be determined. The purpose of this review is to discuss the roles of protein kinases in elicitor signal transduction pathways in plant cells based on recent progress in this field.

Key words

Defense responses Elicitors Hypersensitive response MAP kinase cascades Protein kinases Protein phosphatase Resistance genes Signal transduction 



gene. avirulence gene


extracellular signal-regulated kinase


hypersensitive response


interleukin-1 receptor


IL-R associated protein kinase


c-Jun N-teminal kinase




leucine-rich repeat


mitogen-activated protein kinase


MAPK kinase


MAPKK kinase


myelin basic protein


MAPK and ERK kinase


kinase 1


kinase 4


protein, pathogenesisrelated protein


PR5-like receptor kinase; pcd, programmed cell death


polygalacturonase inhibitor protein




R gene, resistance gene


stressactivated protein kinase




S-locus glycoprotein


S-locus receptor kinase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, M.M., Keppler, L.D., Orlandi, E.W., Baker, C.J., andMischke, C.F. 1990. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco Plant Physiol.92: 215–221.Google Scholar
  2. Baker, C.J., Orlandi, E.W. andMock, N.M. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused byErwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol.102: 1341–1344.PubMedGoogle Scholar
  3. Benna, J.E., Faust, L.P. andBablor, B.M. 1994. The phosphorylation of the respiratory burst oxidase component p47 phox during neutrophil activation. J. Biol. Chem.289: 23431–23436.Google Scholar
  4. Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J. andStaskawicz, B.J. 1994.RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science265: 1856–1860.PubMedGoogle Scholar
  5. Bergmann, C.W., Ito, Y., Singer, D., Albersheim, P., Darvill, A. G., Benhamou, N., Nuss, L., Salvi, G., Gervone, F., andDe Lorenzo, G. 1994. Polygalacturonase-inhibiting protein accumulates inPhaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J.5: 625–634.CrossRefPubMedGoogle Scholar
  6. Braun, D.M. andWalker, J.C. 1996. Plant transmembrane receptors: new pieces in the signaling puzzle. Trends Biochem. Sci.21: 70–73.CrossRefPubMedGoogle Scholar
  7. Cano, E. andMahadevan, L.C. 1994. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci.20: 117–122.Google Scholar
  8. Cao, Z., Henzel, W.J. andGao, X. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science271: 1128–1131.PubMedGoogle Scholar
  9. Chandra, S., Heinstein, P.F. andLow, P.S. 1996. Activation of phospholipase A by plant defense elicitors. Plant Physiol.110: 979–986.PubMedGoogle Scholar
  10. Chandra, S. andLow, P.S. 1995. Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proc. Natl. Acad. Sci. USA92: 4120–4123.PubMedGoogle Scholar
  11. Chasan, R. 1995. Eliciting phosphorylation. Plant Cell7: 495–497.Google Scholar
  12. Chen, Y.-R., Meyer, C.F. andTan, T.-H. 1996. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in γ radiation-induced apoptosis. J. Biol. Chem.271: 631–634.PubMedGoogle Scholar
  13. Conrath, U., Jeblick, W. andKauss, H. 1991. The protein kinase inhibitor, K-252a, decreases elicitor-induced Ca2+ uptake and K+ release, and increases coumarin synthesis in parsley cells. FEBS Lett.279: 141–144.CrossRefPubMedGoogle Scholar
  14. Després, C., Subramanlam, R., Matton, D.P. andBrisson, N. 1995. The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell7: 589–598.PubMedGoogle Scholar
  15. Dietrich, A., Mayer, J.E. andHahlbrock, K. 1990. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J. Biol. Chem.265: 6360–6368.PubMedGoogle Scholar
  16. Dietrich, R.A., Delancy, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A. andDangl, J.L. 1994.Arabidopsis mutants simulating disease resistance response. Cell77: 565–577.CrossRefPubMedGoogle Scholar
  17. Dinesh-Kumar, S.P., Whitham, S., Choi, D., Hehl, R., Corr, C. andBaker, B. 1995. Transposon tagging of tobacco mosaic virus resistance geneN: its possible role in the TMV-N-mediated signal transduction pathway. Proc. Natl. Acad. Sci. USA92: 4175–4180.PubMedGoogle Scholar
  18. Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K. andJones, J.D.G. 1996. The tomatoCf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell84: 451–459.CrossRefPubMedGoogle Scholar
  19. Dong, X. 1995. Finding the missing pieces in the puzzle of plant disease resistance. Proc. Natl. Acad. Sci. USA92: 7137–7139.PubMedGoogle Scholar
  20. Drayer, A.L. andHaastert, P.J.M. 1994. Transmembrane signaling in eukaryotes: a comparison between higher and lower eukaryotes. Plant Mol. Biol.26: 1239–1270.CrossRefPubMedGoogle Scholar
  21. Ebel, J. andCosio, E.G. 1994. Elicitors of plant defense responses. Int. Rev. Cytol.148: 1–36.Google Scholar
  22. Farmer, E.E. 1994. Fatty acid signaling in plants and their associated microorganisms. Plant Mol. Biol.26: 1423–1473.CrossRefPubMedGoogle Scholar
  23. Farmer, E.E. andRyan, C.A. 1990. Interplant communication: air-borne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA87: 7713–7716.PubMedGoogle Scholar
  24. Felix, G., Grosskopf, D.G., Regenass, M. andBoller, T. 1991. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA88: 8831–8834.PubMedGoogle Scholar
  25. Felix, G., Regenass, M. andBoller, T. 1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J.4: 307–316.CrossRefGoogle Scholar
  26. Felix, G., Regenass, M., Spanu, P. andBoller T. 1994. The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P] phosphate. Proc. Natl. Acad. Sci. USA91: 952–956.PubMedGoogle Scholar
  27. Flor, H.H. 1946. Genetics of pathogenecity inMelamspora lini. J. Agr. Res.73: 335–357.Google Scholar
  28. Fukuda, Y. andShinshi, H. 1994. Characterization of a novelcis-acting element that is responsive to a fungal elicitor in the promoter of tobacco class 1 chitinase gene. Plant Mol. Biol.24: 485–493.CrossRefPubMedGoogle Scholar
  29. Grab, D., Ferger, M. andEbel, J. 1989. An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylatedin vivo in elicitor-challenged cells. Planta179: 340–348.CrossRefGoogle Scholar
  30. Grant, M.R., Godiard, L., Straube, E., Ashfiel, T., Lewald, J., Sattler, A., Innes, R.W. andDangl, J.L. 1995. Structure of theArabidopsis RPM1 gene enabling dual specificity disease resistance. Science269: 843–846.PubMedGoogle Scholar
  31. Greenberg, J.T. andAusubel, F.M. 1993.Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J.4: 327–341.CrossRefPubMedGoogle Scholar
  32. Greenberg, J.T., Guo, A., Klessig, D.F. andAusubel, F.M. 1994. Programmed cell death in plants: a pathogentriggered response activated coordinately with multiple defense functions. Cell77: 551–563.CrossRefPubMedGoogle Scholar
  33. Grosskopf, D.G., Felix, G. andBoller, T. 1990. K-252a inhibits the response of tomato cells to fungal elicitorsin vivo and their microsomal protein kinasein vitro. FEBS Lett.275: 177–180.CrossRefPubMedGoogle Scholar
  34. Haecker, G. andVaux, D.L. 1994. Viral, worm and radical implications for apoptosis. Trends Biochem. Sci.19: 99–100.CrossRefPubMedGoogle Scholar
  35. He, S.Y., Bauer, D.W., Collmer, A. andBeer, S.V. 1994. Hypersensitive response elicited byErwinia amylovora harpin requires active plant metabolism. Mol. Plant-Microbe Interact.7: 289–292.Google Scholar
  36. Heguy, A., Baldari, C.T., Macchia, G., Telford, J.L. andMelli, M. 1992. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and theDrosophila Toll protein are essential for IL-1R signal transduction. J. Biol. Chem.267: 2605–2609.PubMedGoogle Scholar
  37. Hill, C.S. andTreisman, R. 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell80: 199–211.CrossRefPubMedGoogle Scholar
  38. Jonak, C., Heberle-Bros, E. andHirt, H. 1994. MAP kinases: universal multi-purpose signaling tools. Plant Mol. Biol.24: 407–416.CrossRefPubMedGoogle Scholar
  39. Jones, A.M. andDangl, J.L. 1996. Logiam at the Styx: programmed cell death in plants. Trends Plant Sci.1: 114–119.Google Scholar
  40. Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J. andJones, J.D.G. 1994. Isolation of the tomatoCf-9 gene for resistance toCladosporium fulvum by transposon tagging. Science266: 789–793.PubMedGoogle Scholar
  41. Karin, M. 1995. The regulation of AP-1 activity by mitogenactivated protein kinases. J. Biol. Chem.270: 16483–16486.PubMedGoogle Scholar
  42. Kauss, H., Jeblick, W. andConrath, U. 1992. Protein kinase inhibitor K-252a and fusicoccin induce similar initial changes on ion transport of parsley suspension cells. Physiol. Plant.85: 483–488.CrossRefGoogle Scholar
  43. Kobe, B. andDeisenhofer, J. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci.19: 415–421.CrossRefPubMedGoogle Scholar
  44. Kombrink, E. andSomssich, I.E. 1995. Defense responses of plant to pathogens. Adv. Bot. Res.21: 1–34.Google Scholar
  45. Korfhage, U., Trezzini, G.F., Meier, I., Hahlbrock, K. andSomssich, I.E. 1994. Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell6: 695–708.CrossRefPubMedGoogle Scholar
  46. Kuehl, F.A. andEgan, R.W. 1980. Prostaglandins, arachidonic acid and inflammation. Science210: 978–984.PubMedGoogle Scholar
  47. Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A. andEllis, J.G. 1995. TheL6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance geneRPS2 and the tobacco viral resistance geneN. Plant Cell7: 1195–1206.CrossRefPubMedGoogle Scholar
  48. Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R. andLamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol.6: 427–437.CrossRefPubMedGoogle Scholar
  49. Levine, A., Tenhaken, R., Dixon, R. andLamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell79: 583–593.CrossRefPubMedGoogle Scholar
  50. Lin, L.-L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A. andDavis, R.J. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell72: 269–278.CrossRefPubMedGoogle Scholar
  51. MacKintosh, C. andCohen, P. 1989. Identification of high levels of type 1 and type 2 protein phosphatases in higher plants. Biochem. J.262: 335–339.PubMedGoogle Scholar
  52. MacKintosh, C., Lyon, G.D. andMacKintosh, R.W. 1994. Protein phosphatase inhibitors activate anti-fungal defense responses of soybean cotyledons and cell cultures. Plant J.5: 137–147.CrossRefGoogle Scholar
  53. Marshall, C.J. 1994. MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase. Curr. Opin. Genet. Dev.4: 82–89.CrossRefPubMedGoogle Scholar
  54. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. andTankley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science262: 1432–1436.PubMedGoogle Scholar
  55. Martin, G.B., Frary, A., Wu, T., Brommonschenkel, S., Chunwongse, J., Earle, E.D. andTanksley, S.D. 1994. A member of the tomatoPto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell6: 1543–1552.CrossRefPubMedGoogle Scholar
  56. Mehdy, M. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol.105: 467–472.PubMedGoogle Scholar
  57. Midrions, M., Katagiri, F., Yu, G.-L. andAusubel, F.M. 1994. TheA. thaliana disease resistance geneRPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell78: 1089–1099.Google Scholar
  58. Mittler, R. andLam, E. 1995. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell7: 1951–1962.PubMedGoogle Scholar
  59. Mittler, R., Shulaev, V. andLam, E. 1995. Coordinate activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell7: 29–42.PubMedGoogle Scholar
  60. Morel, F., Doussiere, J. andVignais, P.V. 1991. The superoxide-generating oxidase of phagocytotic cells: physiological, molecular and pathological aspects. Eur. J. Biochem.201: 523–546.CrossRefPubMedGoogle Scholar
  61. Nasrallah, J.B., Rundle, S.J. andNasrallah, M.E. 1994a. Genetic evidence of the requirement of theBrassica S locus receptor kinase gene in the self-incompatibility response. Plant J.5: 373–384.CrossRefGoogle Scholar
  62. Nasrallah, J.B., Stein, J.C., Kandasamy, M.K. andNasrallah, M.E. 1994b. Signaling the arrest of pollen tube development in self-incompatible plants. Science266: 1505–1508.Google Scholar
  63. Nishihama, R., Banno, H., Shibata, W., Hirano, K., Nakashima, M., Usami, S. andMachida, Y. 1995. Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol.36: 749–757.PubMedGoogle Scholar
  64. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K. andScheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell78: 449–460.CrossRefPubMedGoogle Scholar
  65. Raz, V. andFluhr, R. 1993. Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell5: 523–530.CrossRefPubMedGoogle Scholar
  66. Ryerson, D.E. andHeath, M.C. 1996. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell8: 393–402.CrossRefPubMedGoogle Scholar
  67. Salmeron, J.M., Barker, S.J., Carland, F.M., Mehta, A.Y. andStaskawicz, B.J. 1994. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell6: 511–520.CrossRefPubMedGoogle Scholar
  68. Schneider, D.S., Hudson, K.L., Lin, T.Y. andAnderson, K.V. 1991. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in theDrosophila embryo. Genes Dev.5: 797–807.PubMedGoogle Scholar
  69. Schwacke, R. andHager, A. 1992. Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta187: 136–141.CrossRefGoogle Scholar
  70. Seo, S., Okamodo, M., Seto, H., Ishizuka, K., Sano, H. andOhashi, Y. 1995. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science270: 1988–1991.PubMedGoogle Scholar
  71. Serrano, R. 1989. Structure and function of plasma membrane ATPase. Annu. Rev. Plant Physiol. Plant Mol. Biol.40: 61–94.CrossRefGoogle Scholar
  72. Shelton, C.A. andWasserman, S.A. 1993 pelle encodes a protein kinase required to establish dorsoventral polarity in theDrosophila embryo. Cell72: 515–525.CrossRefPubMedGoogle Scholar
  73. Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C. andRonald, P. 1995. A receptor-like protein encoded by the rice disease resistance gene,Xa21. Science270: 1804–1806.PubMedGoogle Scholar
  74. Staskawicz, B.J., Ausubel, F.M., Baker, B.J., Ellis, J.G. andJones, J.D.G. 1995. Molecular genetics of plant disease resistance. Science268: 661–667.PubMedGoogle Scholar
  75. Su, B., Jacinto, E., Hibi, M., Kallunki, Karin, M. andBen-Neriah, Y. 1994. JNK is involved in signal integration during costimulation of T lymphocytes. Cell77: 727–736.CrossRefPubMedGoogle Scholar
  76. Suzuki, K., Fukuda, Y. andShinshi, H. 1995. Studies on elicitor-signal transduction leading to differential expression of defense genes in cultured tobacco cells. Plant Cell Physiol.36: 281–289.Google Scholar
  77. Suzuki, K. andShinshi, H. 1995. Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell7: 639–647.CrossRefPubMedGoogle Scholar
  78. Suzuki, K., Yano, A. andShinshi, H. 1996. Characterization of elicitor-responsive 47-kD protein kinase in tobacco cells. Plant Cell Physiol.37: s188.Google Scholar
  79. Tenhaken, R., Levine, A., Brisson, LF., Dixon, R. andLamb, C. 1995. Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA92: 4158–4163.PubMedGoogle Scholar
  80. Usami, S., Banno, H., Ito, Y., Nishihama, R. andMachida, Y. 1995. Cutting activates a 46-kilodalton protein kinase in plants. Proc. Natl. Acad. Sci. USA92: 8660–8664.PubMedGoogle Scholar
  81. Vaux, D.L. andStrasser, A. 1996. The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA93: 2239–2244.CrossRefPubMedGoogle Scholar
  82. Verheij, M., Bose, R., Lin, X.H., Yao, B., Javis, W.D., Grant, S., Birrer, M.J., Szabo, E., Zon, L.I., Kyriakis, J.M., Haimovitz-Friedman, A., Funks, Z. andKolesinck, N. 1996. Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature380: 75–79.CrossRefPubMedGoogle Scholar
  83. Viard, M.-P., Martin, F., Pugin, A., Ricci, P. andBlein, J.-P.. 1994. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol.104: 1245–1249.PubMedGoogle Scholar
  84. Wang, H., Li, J., Bostock, R.M. andGilchrist, D.G. 1996. Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell8: 375–391.PubMedGoogle Scholar
  85. Wang, X., Zafian, P., Choudhary, M. andLawton, M. 1996. The PR5K receptor protein kinase fromArabidopsis thaliana is structurally related to a family of plant defense proteins. Proc. Natl. Acad. Sci. USA93: 2598–2602.PubMedGoogle Scholar
  86. Weymann, K., Hunt, M., Uknes, S., Neuenschwander, U., Lawton, K., Steiner, H. andRyals, J. 1995. Suppression and restoration of lesion formation in ArabidopsisIsd mutants. Plant Cell7: 2013–2022.CrossRefPubMedGoogle Scholar
  87. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. andBaker, B. 1994. The product of the tobacco mosaic virus resistance geneN: similarity to Toll and the interleukin-1 receptor. Cell78: 1101–1115.CrossRefPubMedGoogle Scholar
  88. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. andGreenberg, M.E. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270: 1326–1331.PubMedGoogle Scholar
  89. Yano, A., Suzuki, K., Uchimiya, H. andShinshi, H. 1996. Induction of cell death by fungal elicitor in tobacco suspension culture. Plant Cell Physiol.37: s187.Google Scholar
  90. Yang, H.S., Huang, H.C. andCollmer, A. 1993.Pseudomonas syringae pv.syringae Harpin: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell73: 1255–1266.Google Scholar
  91. Yu, L.M., Lamb, C. andDixon, R.A. 1993. Purification and biochemical characterization of proteins which bind to the H-boxcis-element implicated in transcriptional activation of plant defense genes. Plant J.3: 805–816.PubMedGoogle Scholar
  92. Zhou, J., Loh, Y.-T., Bressan, R.A. andMartin, G.B. 1995. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell83: 925–935.PubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan 1996

Authors and Affiliations

  1. 1.Plant Molecular Biology Laboratory, Molecular Biology DepartmentNational Institute of Bioscience and Human TechnologyTsukubaJapan

Personalised recommendations