Journal of Plant Research

, Volume 109, Issue 3, pp 241–251 | Cite as

Green algae to land plants: An evolutionary transition

  • Linda E. Graham


Studies focused upon the evolutionary transition from ancestral green algae to the earliest land plants are important from a range of ecological, molecular and evolutionary perspectives. A substantial suite of ultrastructural, biochemical and molecular data supports the concept that land plants (embryophytes) are monophyletically derived from an ancestral charophycean alga. However, the details of phylogenetic branching patterns linking extant charophytes and seedless embryophytes are currently unclear. Moreover, the fossil record has so far been mute regarding the algae-land plant transition. Nevertheless, an accurate reflection of major evolutionary events in the history of the earliest land plants can be obtained by comparative paleontological-neontological studies, and comparative molecular, cellular and developmental investigations of extant charophytes and bryophytes. This review focuses upon research progress toward understanding three clade-specific adaptations that were important in the successful colonization of land by plants: the histogenetic apical meristem, the matrotrophic embryo, and decay-resistant cell wall polymers.

Key words

Bryophytes-Charophytes-Embryophytes Evolutionary origin of-embryo-meristem-resistant wall compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldauf, S.L., Manhart, J.R. andPalmer, J.D. 1990. Different fates of the chloroplasttufA gene following its transfer to the nucleus in green algae. Proc. Nat. Acad. Sci. USA87: 5317–5321.PubMedGoogle Scholar
  2. Barlow, P.W. 1994. Evolution of structural initial cells in apical meristems of plants. J. theor. Biol.169: 163–177.CrossRefGoogle Scholar
  3. Barton, M.K. andPoethig, R.S. 1993. Formation of the shoot apical meristem inArabidopsis thaliana: An analysis of development in the wild type and in the shoot meristemless mutant. Development119: 823–831.Google Scholar
  4. Behrensmeyer, A.K., Damuth, J.D., DiMichele, W.A., Potts, R., Sues, H.-D. andWing, S.L. 1992. Terrestrial Ecosystems through Time. Evolutionary Paleoecology of Terrestrial Plants and Animals. University of Chicago Press, Chicago.Google Scholar
  5. Berner, R.A. 1993. Paleozoic atmospheric CO2: Importance of solar radiation and plant evolution. Science261: 68–70.Google Scholar
  6. Brown, R.C. andLemmon, B.E. 1988. Preprophasic microtubule systems and development of the mitotic spindle in hornworts (Bryophyta). Protoplasma143: 11–21.CrossRefGoogle Scholar
  7. Brown, R.C. andLemmon, B.E. 1992. Polar organizers in monoplastidic mitosis of hepatics (Bryophyta). Cell Motil. Cytoskel.22: 72–77.Google Scholar
  8. Brown, R.C., Lemmon, B.E. andGraham, L.E. 1994. Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green algaColeochaete orbicularis. Amer. J. Bot.81: 127–133.Google Scholar
  9. Browning, A.J. andGunning, B.E.S. 1979. Structure and function of transfer cells in the sporophyte haustorium ofFunaria hygrometrica Hedw. II. Kinetics of uptake of labeled sugars and localization of absorbed products by freeze-substitution and autoradiography. J. Exptl. Bot.30: 1247–1264.Google Scholar
  10. Cai, C., Quyang, S., Wang, Y., Fang, Z., Rong, J., Geng, L. andLi, X. 1996. An early Silurian land plant. Nature379: 592.CrossRefGoogle Scholar
  11. Chapman, R.L. andBuchheim, M.A. 1991. Ribosomal RNA gene sequences: analysis and significance in the phylogeny and taxonomy of green algae. Crit. Rev. in Plant Sci.10: 343–368.Google Scholar
  12. Colasanti, J., Cho, S.-O., Wick, S. andSundaresan, V. 1993. Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with prodicted division sites. The Plant Cell5: 1101–1111.PubMedGoogle Scholar
  13. Delwiche, C.F., Graham, L.E. andThomson, N. 1989. Lignin-like compounds and sporopollenin inColeochaete, an algal model for land plant ancestry. Science245: 399–401.Google Scholar
  14. Edwards, D. 1982. Fragmentary non-vascular plant microfossils from the late Silurian of Wales. Bot. J. Linn. Soc.84: 223–256.Google Scholar
  15. Edwards, D. 1986. Dispersed cuticles of putative non-vascular plants from the Lower Devonian of Britain. Bot. J. Linn. Soc.93: 259–275.Google Scholar
  16. Edwards, D. 1993. Tansley Review No. 55. Cells and tissues in the vegetative sporophytes of early land plants. New Phytologist125: 225–247.Google Scholar
  17. Edwards, D., Duckett, J. G. andRichardson, J.B. 1995. Hepatic characters in the earliest land plants. Nature374: 635–636.CrossRefGoogle Scholar
  18. Edwards, D.S. andEdwards, D. 1986. A reconsideration of the Rhyniophyta Banks.In Spicer and Thomas, eds., Systematic and Taxonomic Approaches to Palaeobotany, Oxford, Clarendon Press, pp. 199–222.Google Scholar
  19. Etemad-Moghadem, B., Guo, S. andKemphues, K.J. 1995. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in earlyC. elegans embryos. Cell83: 743–752.Google Scholar
  20. Feist, M. andGrambast-Fessard, N. 1991. The genus concept in Charophyta: evidence from Paleozoic to Recent.In Riding ed., Calcareous Algae and Stromatolites, Springer-Verlag, New York, pp. 189–303.Google Scholar
  21. Friedman, W.E. 1995. Organismal duplication, inclusive fitness theory, and altruism: Understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl. Acad. Sci. USA92: 3913–3917.PubMedGoogle Scholar
  22. Garbary, D.J., Renzaglia, K.S. andDuckett, J.G. 1993. The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Pl. Syst. Evol.188: 237–269.Google Scholar
  23. Gavin, K.A., Hidaka, M. andStillman, B. 1995. Conserved initiator proteins in eukaryotes. Science270: 1667–1671.PubMedGoogle Scholar
  24. Gensel, P.G., Johnson, N.G. andStrother, P.K. 1991. Early land plant debris (Hooker's “waifs and strays”?). Palaios5: 520–547.Google Scholar
  25. Graham, L.E. 1985. The origin of the life cycle of land plants. Amer. Sci.73: 178–186.Google Scholar
  26. Graham, L.E. 1990. Meiospore formation in charophycean algae.In Blackmore and Barnes, eds., Microspores: Evolution and Ontogeny, Academic Press, London, pp. 43–54.Google Scholar
  27. Graham, L.E. 1993. The Origin of Land Plants. Wiley & Sons, New York.Google Scholar
  28. Graham, L.E. andKaneko, Y. 1991. Subcellular structures of relevance to the orgin of land plants (embryophytes) from green algae. Crit. Rev. in Plant Sci.10: 323–342.Google Scholar
  29. Graham, L.E. andMcBride, G.E. 1979. The occurrence and phylogenetic significance of a multilayered structure inColeochaete spermatozoids. Amer. J. Bot.66: 887–894.Google Scholar
  30. Graham, L.E. andRepavich, W.M. 1989. Spermatogenesis inColeochaete pulvinata (Charophyceae): early blepharoplast development. Amer. J. Bot.76: 1266–1278.Google Scholar
  31. Graham, L.E. andWedemayer, G.J. 1984. Spermatogenesis inColeochaete pulvinata (Charophyceae): sperm maturation. J. Phycol.20: 301–309.CrossRefGoogle Scholar
  32. Graham, L.E. andWilcox, L.W. 1983. The occurrence and phylogenetic significance of putative placental transfer cells in the green algaColeochaete. Amer. J. Bot.70: 113–120.Google Scholar
  33. Graham, L.E., Delwiche, C.F. andMishler, B. 1991. Phylogenetic connections between the ‘green algae’ and the ‘bryophytes’. Advances in Bryology4: 213–244.Google Scholar
  34. Graham, L.E., Graham, J.M., Russin, W.R. andChesnick, J.M. 1994. Occurrence and phylogenetic significance of glucose utilization by charophycean algae: Glucose enhancement of growth inColeochaete orbicularis. Amer. J. Bot.81: 423–432.Google Scholar
  35. Gray, J. 1985. The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970–1984. Phil. Trans. R. Soc. London B309: 167–195.Google Scholar
  36. Gray, J., Massa, D., andBoucot, A.J. 1982. Caradocian land plant microfossils from Libya. Geology10: 197–201.CrossRefGoogle Scholar
  37. Gunnison, D., andAlexander, M. 1975a. Resistance and susceptibility to decomposition by natural microbial communities. Limnol. Oceanogr.20: 64–70.Google Scholar
  38. Gunnison, D., andAlexander, M. 1975b. Basis for the resistance of several algae to microbial decomposition. Applied Microbiol.29: 729–738.Google Scholar
  39. Guo, S. andKemphues, K.J. 1995. par-1, a gene required for establishing polarity inC. elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell81: 611–620.PubMedGoogle Scholar
  40. Gupta, R.S. 1995. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evolut.12: 1063–1073.Google Scholar
  41. Heisel, B., Combrettes, B. andBrennicke, A. 1994. Evidence for RNA editing in mitochondria of major groups of land plants except the bryophytes. Proc. Natl. Acad. Sci. USA91: 634–638.Google Scholar
  42. Herr, J.M. 1995. The origin of the ovule. Amer. J. Bot.82: 547–564.Google Scholar
  43. Hopkins, A.W. andMcBride, G.E. 1976. The life history ofColeochaete scutata (Chlorophyceae) studied by a Feulgen microspectrophotometric analysis. J. Phycol.12: 29–35.Google Scholar
  44. Jernstedt, J.A., Cutter, E.G., Gifford, E.M. andLu, P. 1992. Angle meristem origin and development inSelaginella martensii. Ann. Bot.69: 351–363.Google Scholar
  45. Katsaros, C. andGalatis, B. 1992. Immunofluorescence and electron microscopic studies of microtubule organization during the cell cycle ofDictyota dichotoma (Phaeophyta, Dictyotales). Protoplasma169: 75–84.CrossRefGoogle Scholar
  46. Keller, C.K. andWood, B.D. 1993. Possibility of chemical weathering before the advent of vascular land plants. Nature364: 223–224.CrossRefGoogle Scholar
  47. Keller, G.-A., Krisans, S., Gould, S.J., Sommer, J.M., Wang, C.C., Schliebs, W., Kunau, W., Brody, S. andSubramani, S. 1991. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J. Cell Biol.114: 893–904.CrossRefPubMedGoogle Scholar
  48. Kemp, T.S. 1982. Mammal-like Reptiles and the Origin of Mammals. Academic Press, London.Google Scholar
  49. Kenrick, P. 1994. Alternation of generations in land plants: new phylogenetic and paleobotanical evidence. Biol. Rev.69: 293–330.Google Scholar
  50. Kenrick, P. andCrane, P.R. 1991. Water conducting cells in early fossil land plants: implication for the early evolution of tracheophytes. Bot. Gaz.152: 335–356.CrossRefGoogle Scholar
  51. Kimble, M. andKuriyama, R. 1992. Functional components of microtubule-organizing centers. Int. Rev. Cyt.136: 1–50.Google Scholar
  52. Kroken, S.B., Graham, L.E. and Cook, M.E. 1996. Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Amer. J. Bot. (provisionally accepted).Google Scholar
  53. Ligrone, R., Duckett, J.G. andRenzaglia, K.S. 1993. The gametophyte-sporophyte junction in land plants. Adv. in Bot. Res.19: 232–217.Google Scholar
  54. Manchester, J., Kong, X., Lowry, O.H. andLawrence, J.C., Jr. 1994. Ras signaling in the activation of glucose transport by insulin. Proc. Natl. Acad. Sci. USA91: 444–4648.Google Scholar
  55. Manhart, J. 1994. Phylogenetic analysis of green plant rbcL sequences. Molec. Phylog. Evol.3: 114–127.Google Scholar
  56. Manhart, J.R., andPalmer, J.D. 1990. The gain of 2 chloroplast tRNA introns marks the green algal ancestors of land plants. Nature345: 268–270.CrossRefPubMedGoogle Scholar
  57. Marger, M.D., andSaier, M.H., Jr. 1993. A major superfamily of transmembrane facilitators that catalyze uniport, symport, and antiport. TIBS18: 13–20.PubMedGoogle Scholar
  58. Mattox, K.R. andStewart, K.D. 1984. Classification of the green algae: a concept based on comparative cytology.In Irving and John, eds, Systematics of the Green Algae, Academic Press, London, pp. 29–72.Google Scholar
  59. McCourt, R.M. 1995. Green algal phylogeny. Trends in Ecology and Evolution10: 159–63.CrossRefGoogle Scholar
  60. McCourt, R.M., Karol, K.G., Kaplan, S. andHoshaw, R.W. 1996a. Using rbcL sequences to test hypotheses of chloroplast and thallus evolution in conjugating green algae (Zygnematales, Charophyceae). J. Phycol.31: 989–995.Google Scholar
  61. McCourt, R.M., Karol, K.G., Guerlesquin, M. andFeist, M. 1996b. Phylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL sequences and morphology. Amer. J. Bot.83: 71–77.Google Scholar
  62. McKitrick, M.C. 1993. Phylogenetic constraint in evolutionary theory. Ann. Rev. Ecol. Syst.24: 307–330.CrossRefGoogle Scholar
  63. Miles, D.B. andDunham, A.E. 1993. Historical perspectives in ecology and evolutionary biology. Ann. Rev. Evol. Syst.24: 587–619.Google Scholar
  64. Mishler, B.D. andChurchill, S.P. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics1: 305–328.Google Scholar
  65. Mishler, B.D., Thrall, P.H., Hopple, J.S., Jr., DeLuna, E. andVilgalys, R. 1992. A molecular approach to the phylogeny of bryophytes: cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes. The Bryologist95: 172–180.Google Scholar
  66. Mishler, B.D., Lewis, L.A., Buchheim, M.A., Renzaglia, K.S., Garbary, D.J., Delwiche, C.F., Zechman, F.W., Kantz, T.S. andChapman, R.L. 1994. Phylogenetic relationships of the “green algae” and “bryophytes”. Ann. Mo. Bot. Gard.81: 451–483.Google Scholar
  67. Palme, K. 1992. Molecular analysis of plant signaling elements: relevance of eukaryotic signal transduction models. Int. Rev. Cytol.132: 223–283.PubMedGoogle Scholar
  68. Pickett-Heaps, J.D. 1967. Ultrastructure and differentiation inChara sp. II. Mitosis. Aust. J. Biol. Sci.20: 883–894.Google Scholar
  69. Pickett-Heaps, J.D. 1975. Green Algae. Structure Reproduction and Evolution in Selected Genera, Sinauer, Sunderland, Massachusetts.Google Scholar
  70. Ragan, M.A., Parsons, T.J., Sawa, T. andStraus, N.A. 1994. 18S ribosomal DNA sequences indicate a monophyletic origin of Charophyceae. J. Phycol.30: 490–500.CrossRefGoogle Scholar
  71. Raven, P. Evert, R.F. andEichhorn, S.E. 1992. Biology of Plants, Worth, New York.Google Scholar
  72. Renault, S., Bonnemain, J.L., Faye, J.L. andGaudillere, J.P. 1992. Physiological aspects of sugar exchange between the gametophyte and the sporophyte ofPolytrichum formosum. Plant Physiol.100: 1815–1822.Google Scholar
  73. Renzaglia, K.S. 1978. A comparative morphology and developmental anatomy of the Anthocerotophyta. J. Hattori Bot. Lab.44: 31–90.Google Scholar
  74. Remy, W., Gensel, P.G. andHass, H. 1993. The gametophyte generation of some Early Devonian land plants. Int. J. Plant Sci.154: 35–58.CrossRefGoogle Scholar
  75. Rhyu, M. andKnoblich, J.A. 1995. Spindle orientation and asymmetric cell fate. Cell82: 523–526.CrossRefPubMedGoogle Scholar
  76. Sauer, N. andTanner, W. 1993. Molecular biology of sugar transporters in plants. Bot. Acta,106: 277–286.Google Scholar
  77. Sawitzky, H. andGrolig, F. 1995. Phragmoplast of the green algaSpirogyra is functionally distinct from the higher plant phragmoplast. J. Cell Biol.130: 1359–1371.CrossRefPubMedGoogle Scholar
  78. Schlegel, M. 1994. Molecular phylogeny of eukaryotes. Trends in Ecology and Evolution9: 330–335.CrossRefGoogle Scholar
  79. Schofield, W.B. 1985. Introduction to Bryology. Macmillan, New York.Google Scholar
  80. Sinha, N.R., Williams, R.E. andHake, S. 1993. Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev.7: 787–795.PubMedGoogle Scholar
  81. Stadler, R., Wolf, K., Hilgarth, C., Tanner, W. andSauer, N. 1995. Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a co-induced galactose-H+ symporter. Plant Physiol.107: 33–41.CrossRefPubMedGoogle Scholar
  82. Starke, T. andGogarten, J.P. 1993. A conserved intron in the V-ATPase A subunit genes of plants and algae. FEBS315: 252–258.CrossRefGoogle Scholar
  83. Surek, B., Beemelmanns, U., Melkonian, M. andBhattacharya, D. 1994. Ribosomal RNA sequence comparisons demonstrate an evolutionary relationship between Zygnematales and charophytes. Plant Syst. Evol.191: 171–181.CrossRefGoogle Scholar
  84. Sze, P. 1993. A Biology of the Algae, Wm. C. Brown, Dubuque, Iowa.Google Scholar
  85. Taylor, W.A. 1995. Spores in earliest land plants. Nature373: 391–392.CrossRefGoogle Scholar
  86. Waters, D.A., Buchheim, M.A., Dewey, R.A., andChapman, R.L. 1992. Preliminary inference of the phylogeny of bryophytes from nuclear-encoded ribosomal RNA sequences. Amer. J. Bot.79: 459–466.Google Scholar
  87. Wilcox, L.W., Fuerst, P.A. andG.L. Floyd. 1993. Phylogenetic relationships of four charophycean algae inferred from complete nuclear-encoded small subunit rRNA gene sequences. Amer. J. Bot.80: 1028–1033.Google Scholar

Copyright information

© The Botanical Society of Japan 1996

Authors and Affiliations

  • Linda E. Graham
    • 1
  1. 1.University of Wisconsin MadisonUSA

Personalised recommendations