Advertisement

Journal of Plant Research

, Volume 108, Issue 4, pp 517–526 | Cite as

Structural and systematic study of an unusual tracheid type in cacti

  • James D. Mauseth
  • Yoriko Uozumi
  • Brandon J. Plemons
  • James V. Landrum
Original Articles

Abstract

Wide-band tracheids are a specialized tracheid type in which an annular or helical secondary wall projects deeply into the cell lumen. They are short, wide and spindle-shaped, and their bandlike secondary walls cover little of the primary wall, leaving most of it available for water diffusion. Wide-band tracheids appear to store and conduct water while preventing the spread of embolisms. They may be the most abundant tracheary element in the xylem, but they are always accompanied by at least a few vessels. Typically, fibers are absent wherever wide-band tracheids are present. Wide-band tracheids occur in the primary and secondary xylem of succulent stems, leaves and roots in genera of all three subfamilies of Cactaceae but were not found in the relictual genusPereskia, which lacks succulent tissues. In the large subfamily Cactoideae, wide-band tracheids occur only in derived members, and wide-band tracheids of North American Cactoideae are narrower and are aligned in a more orderly radial pattern than those of South American Cactoideae. Wide-band tracheids probably arose at least three times in Cactaceae.

Key words

Cactaceae Evolution Water stress Wood Xeric adaptation Xylem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, I.W. 1960. Comparative anatomy of the leaf-bearing Cactaceae, I. Foliar vasculature ofPereskia, Pereskiopsis, andQuiabentia. J. Arnold Arbor.41: 341–356.Google Scholar
  2. Bailey, I.W. 1964. Comparative anatomy of the leaf-bearing Cactaceae, XI. The xylem ofPereskiopsis andQuiabentia. J. Arnold Arbor.45: 140–157.Google Scholar
  3. Bailey, I.W. andSrivastava, L.M. 1962. Comparative anatomy of the leaf-bearing Cactaceae, IV. The fusiform initials of the cambium and the form and structure of their derivatives. J. Arnold Arbor.43: 187–202.Google Scholar
  4. Barthlott, W. andHunt, D.R. 1993. Cactaceae.In K. Kubitzki, ed., The Families and Genera of Vascular Plants, Springer-Verlag, Berlin, pp. 161–197.Google Scholar
  5. Boke, N.H. 1944. Histogenesis of the leaf and areole inOpuntia cylindrica. Amer. J. Bot.31: 299–316.Google Scholar
  6. Britton, N.L. andRose, J.N. 1920. The Cactaceae. Carnegie Institution of Washington, Washington, D.C.Google Scholar
  7. Carlquist, S. 1975. Ecological Strategies of Xylem Evolution. University of California Press, Berkeley.Google Scholar
  8. Carlquist, S. 1980. Further concepts in ecological wood anatomy, with comments on recent work in wood anatomy and evolution. Aliso9: 499–553.Google Scholar
  9. Carlquist, S. 1988. Comparative Wood Anatomy. Systematic, Ecological and Evolutionary Aspects of Dicotyledon Wood. Springer-Verlag, Berlin.Google Scholar
  10. Conde, L.F. 1975. Anatomical comparisons of five species ofOpuntia (Cactaceae). Ann. Missouri Bot. Gard.62: 425–473.Google Scholar
  11. Gibson, A.C. 1973. Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica5: 29–65.Google Scholar
  12. Gibson, A.C. 1977a. Wood anatomy of opuntias with cylindrical to globular stems. Bot. Gaz.138: 334–351.CrossRefGoogle Scholar
  13. Gibson, A.C. 1977b. Vegetative anatomy ofMaihuenia (Cactaceae) with some theoretical discussions of ontogenetic changes in xylem cell types. Bull. Torrey Bot. Club104: 35–48.Google Scholar
  14. Gibson, A.C. 1978a. Woody anatomy of platyopuntias. Aliso9: 279–307.Google Scholar
  15. Gibson, A.C. 1978b. Structure ofPterocactus tuberosus, a cactus geophyte. Cact. Succ. J. (U.S.)50: 41–43.Google Scholar
  16. Hunt, D.R. 1967. Cactaceae.In J. Hutchinson, ed., The Genera of Flowering Plants, vol. 2, Clarendon Press, Oxford, pp. 427–467.Google Scholar
  17. Hunt, D. andTaylor, N. 1990. The genera of Cactaceae: progress towards consensus. Bradleya8: 85–107.Google Scholar
  18. Mauseth, J.D. 1989. Comparative structure-function studies within a strongly dimorphic plant,Melocactus intortus (Cactaceae). Bradleya7: 1–12.Google Scholar
  19. Mauseth, J.D. 1993a. Water-storing and cavitation-preventing adaptations in wood of cacti. Ann. Bot.72: 81–89.CrossRefGoogle Scholar
  20. Mauseth, J.D. 1993b. Medullary bundles and the evolution of cacti. Amer. J. Bot.80: 928–932.Google Scholar
  21. Mauseth, J.D. 1995. Collapsible water-storage cells in cacti. Bull. Torrey Bot. Club122: 145–151.Google Scholar
  22. Mauseth, J.D. Comparative anatomy of Tribes Cereeae and Browningieae (Cactaceae). Bradleya. (in press)Google Scholar
  23. Mauseth, J.D. andFujii, T. 1994. Resin-casting: a method for investigating apoplastic spaces. Amer. J. Bot.81: 104–110.Google Scholar
  24. Mauseth, J.D., Montenegro, G. andWalckowiak, A.M. 1984. Studies of the holoparasiteTristerix aphyllus (Loranthaceae) infectingTrichocereus chilensis (Cactaceae). Can. J. Bot.62: 847–857.Google Scholar
  25. Mauseth, J.D. andPlemons, B.J. 1995. Developmentally variable, polymorphic woods in cacti. Amer. J. Bot.82: 1199–1205.Google Scholar
  26. Mauseth, J.D. andRoss, R.G. 1988. Systematic anatomy of the primitive cereoid cactusLeptocereus quadricostatus. Bradleya6: 49–64.Google Scholar
  27. Mauseth, J.D. andSajeva, M. 1992. Cortical bundles in the persistent, photosynthetic stems of cacti. Ann. Bot.70: 317–324.Google Scholar
  28. Robinson, H. 1974. Scanning electron microscope studies of the spines and glochids of the Opuntioideae (Cactaceae). Amer. J. Bot.61: 278–283.Google Scholar
  29. Sajeva, M. andMauseth, J.D. 1991. Leaf-like structure in the photosynthetic, succulent stems of cacti. Ann. Bot.68: 405–411.Google Scholar
  30. Sattler, R. 1988. Homeosis in plants. Amer. J. Bot.75: 1601–1617.Google Scholar
  31. Schleiden, M.J. 1845. Beiträge zur Anatomie der Cacteen. Mém. Acad. Imp. Sci. St.-Pétersbourg4: 335–380.Google Scholar
  32. Tyree, M.T. andSperry, J.S. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Pl. Physiol. Pl. Mol. Biol.40: 19–38.Google Scholar
  33. Zimmermann, M.H. 1983. Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin.Google Scholar

Copyright information

© The Botanical Society of Japan 1995

Authors and Affiliations

  • James D. Mauseth
    • 1
  • Yoriko Uozumi
    • 1
  • Brandon J. Plemons
    • 1
  • James V. Landrum
    • 1
  1. 1.Department of BotanyUniversity of TexasAustinU.S.A.

Personalised recommendations