Advertisement

Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis

  • M. MohrEmail author
  • B. Vanrumste
Article

Abstract

Model-based reconstruction of electrical brain activity from electro-encephalographic measurements is of growing importance in neurology and neurosurgery. Algorithms for this task involve the solution of a 3D Poisson problem on a realistic head geometry obtained from medical imaging. In the model, several compartments with different conductivities have to be distinguished, leading to a problem with jumping coefficients. Furthermore, the Poisson problem needs to be solved repeatedly for different source contributions. Thus efficient solvers for this subtask are required. Experience with different iterative solvers is reported, i.e. successive over-relaxation, (preconditioned) conjugate gradients and algebraic multigrid, for a discretisation based on cell-centred finite differences. It was found that: first, the multigrid-based solver performed the task 1.8–3.5 times faster, depending on the platform, than the second-best contender; secondly, there was no need to introduce a reference potential that forced a unique solution; and, thirdly, neither the grid-nor matrix-based implementation of the solvers consistently gave a smaller run time.

Keywords

EEG source analysis Iterative solvers Algebraic multigrid method Finite difference method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillet, S., Mosher, J. C., andLeahy, R. M. (2001): ‘Electromagnetic brain mapping’,IEEE Signal Process. Mag.,18, pp. 14–30CrossRefGoogle Scholar
  2. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., andVan Der Vorst, H. V. (1994): ‘Templates for the solution of linear systems: building blocks for iterative methods, 2nd edn’ (SIAM, Philadelphia, PA, 1994)Google Scholar
  3. Berman, A., andPlemmons, R. (1994): ‘Nonnegative matrices in the mathematical sciences’. Number 9 in Classics in applied mathematics (SIAM, 1994)Google Scholar
  4. Boon, P., D'havé, M., Van Hoey, G., Vanrumste, B., Vonck, K., Adam, C., Vandekerckhove, T., Michielsen, G., Baulac, M., andDe Reuck, J. (1999): ‘Source localization in refractory partial epilepsy’,Revue Neurologique,155, pp. 499–508Google Scholar
  5. Briggs, W. L., Henson, V. E., andMcCormick, S. F. (2000): ‘A multigrid tutorial, 2nd edn’ (SIAM, 2000)Google Scholar
  6. Buchner, H., Knoll, G., Fuchs, M., Rienäcker, A., Beckmann, R., Wagner, M., Silny, J., andPesch, J. (1997): ‘Inverse localization of electric dipole current sources in finite element models of the human head’,Electroencephalogr. Clin. Neurophysiol.,102, pp. 267–278Google Scholar
  7. Goedecker, S., andHoisie, A. (2001): ‘Performance optimization of numerically intensive codes’ (SIAM, 2001)Google Scholar
  8. Hackbusch, W. (1992): ‘Elliptic differential equations: theory and numerical treatment’ in ‘Series in computational mathematics’ (Springer, 1992), Vol. 18Google Scholar
  9. Hackbusch, W. (1994): ‘Iterative solution of large sparse systems of equations’ in ‘Applied mathematical sciences’ (Springer, 1994), Vol. 95Google Scholar
  10. Henson, V. E., andYang, U. M. (2002): ‘BoomerAMG: A parallel algebraic multigrid solver and preconditioner’,Appl. Numer. Math.,41, pp. 155–177 (also available as Lawrence Livermore National Laboratory technical report UCRL-JC-141495)CrossRefMathSciNetGoogle Scholar
  11. Hoekema, R., Venner, K., Struijk, J., andHolsheimer, J. (1998): ‘Multigrid solution of the potential field in modeling electrical nerve stimulation’,Comput. Biomed. Res.,31, pp. 348–362CrossRefGoogle Scholar
  12. Jasper, H. (1958): ‘Report of committee on methods of clinical exam in EEG’,Electroencephalogr. Clin. Neurophysiol.,10, pp. 370–375Google Scholar
  13. Lopes da Silva, F. (1987): ‘Event-related potentials: Methodology and quantification’ inNieder Meyer, E., andLopes da Silva, F. (Eds): ‘Electroencephalography, basic principles, clinical applications and related fields, 2nd edn’ (Urban and Schwarzenberg, 1987), Chap. 46, pp. 763–772Google Scholar
  14. Loshin, D. (1998): ‘Efficient memory programming’ (McGraw-Hill, 1998)Google Scholar
  15. Meijerink, J. A., andvan der Vorst, H. A. (1977): ‘An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix’,Math. Comput.,31, pp. 148–162Google Scholar
  16. Mitchell, A., andGriffiths, D. (1980): ‘The finite difference method in partial differential equations’ (John Willey Sons, 1980)Google Scholar
  17. Mohr, M. (2001): ‘Comparison of solvers for a bioelectric field problem.’ Technical report 01–2, Lehrstuhl für Informatik 10 (Systemsimulation), Friedrich-Alexander-Universität Erlangen-Nürnberg. Available on: www10.informatik.uni-erlangen. de/∼mohr/Google Scholar
  18. Oostendorp, T. F., Delbeke, J., andF. S. D. (2000): ‘The conductivity of the human skull: Results ofin vivo andin vitro measurements’,IEEE Trans. Biomed. Eng.,47, pp. 1487–1492CrossRefGoogle Scholar
  19. Plonsey, R., andHeppner, D. B. (1967): ‘Considerations of quasistationarity in electrophysiological systems’,Bull. Math. Biophys.,29, pp. 657–664Google Scholar
  20. Ruge, J. W., andStüben, K. (1987): ‘Algebraic multigrid (AMG)’ inMcCormick, S. F. (Ed.): ‘Multigrid methods’, ‘Frontiers in applied mathematics’ (SIAM, 1987), Vol. 3, pp. 73–130Google Scholar
  21. Saleheen, H. I., andNg, K. T. (1997): ‘New finite difference formulations for general inhomogeneous anisotropic bioelectric problems’,IEEE Trans. Biomed. Eng.,44, pp. 800–809Google Scholar
  22. Tuch, D., Wedeen, V., Dale, A., George, J., andBelliveau, T. (1999): ‘Conductivity mapping of biological tissue using diffusion MRI’ Proc. Third Int. Conf. on Occupational electrical injury & safety, Shanghai, China, 26–28 October, 1998,888,Ann. New York Acad. Sci., pp. 314–316Google Scholar
  23. Vanrumste, B. (2001): ‘EEG dipole source analysis in a realistic head model.’ PhD thesis, Faculty of Engineering, Gent University. Available on: http://www.elec.canterbury.ac.nz/staff/visitors/ bart/bvr_home.htmGoogle Scholar
  24. Vanrumste, B., Van Hoey, C., Van de Walle, R., D'Havé, M., Lemahieu, I., andBoon, P. (2001): ‘The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis’,Brain Topogr.,14, pp. 83–92CrossRefGoogle Scholar
  25. Varga, R. (1962): ‘Matrix iterative analysis’ in ‘Series in Automatic Computation’ (Prentice-Hall, 1962)Google Scholar
  26. Weinstein, D., Zhukov, L., andJohnson, C. (2000): ‘Lead-field bases for electroencephalography source imaging’,Ann. Biomed. Eng.,28, pp. 1059–1065CrossRefGoogle Scholar
  27. Wolters, C., Reitzinger, S., Basermann, A., Burkhardt, S., Hartmann, U., Kruggel, F., andAnwander, A. (2001): ‘Improved tissue modelling and fast solver methods for high-resolution FE-modelling in EEG/MEG-source localization’ inNenonen, J., Ilmoniemi, R., andKatila, T. (Eds): ‘Biomag 2000’. Proceedings of 12th International Conference on BiomagnetismGoogle Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  1. 1.System Simulation Group, Computer Science DepartmentFriedrich-Alexander-University of Erlangen-NurembergGermany
  2. 2.Electrical & Computer EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations