Journal of Soviet Mathematics

, Volume 52, Issue 3, pp 3178–3185 | Cite as

Bruhat decomposition decomposition of root semisimple subgroups in the special linear group

  • A. V. Yakovlev
Article

Abstract

It is proved that the root semisimple subgroups in the special linear group over a field intersects at most four cosets in the Bruhat decomposition and, moreover, most elements of the given subgroup lie in the same coset, with the remaining elements lying in distinct cosets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Z. I. Borevich, “The description of the subgroups of the general linear group that contain the group of diagonal matrices”, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,64, 12–29 (1976).MATHGoogle Scholar
  2. 2.
    Z. I. Borevich and N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring that contain a group of diagonal matrices”, Trudy Mat. Inst. Akad. Nauk SSSR,148, 43–57 (1978).MathSciNetGoogle Scholar
  3. 3.
    N. Bourbaki, Groupes et Algebres de Lie, Chaps. 4–6, Hermann, Paris (1968).Google Scholar
  4. 4.
    N. A. Vavilov, “The Bruhat decomposition of one-dimensional transformations”, Vestn. Leningr. Univ. Ser. I, No. 3, 14–20 (1986).MATHMathSciNetGoogle Scholar
  5. 5.
    N. A. Vavilov, “The Bruhat decomposition of two-dimensional transformations”, Vestn. Leningr. Univ. Ser. I, No. 2, 3–8 (1987).MATHMathSciNetGoogle Scholar
  6. 6.
    N. A. Vavilov, “The Bruhat decomposition of weight elements in Chevalley groups”, in: Eighteenth All-Union Algebra Conference. Abstracts of Communications, Part I, Kishinev (1985), p. 75.Google Scholar
  7. 7.
    N. A. Vavilov and E. V. Dybkova, “Subgroups of the general symplectic group containing the group of diagonal matrices”, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,103, 31–47 (1980).MathSciNetGoogle Scholar
  8. 8.
    A. E. Zalesski, Semisimple root elements of algebraic groups. Preprint Inst. Mat. Akad Nauk BSSR, No. 13(93), Minsk (1980).Google Scholar
  9. 9.
    J. E. Humphreys, Arithmetic Groups, Lecture Notes in Math., No. 789, Springer, Berlin (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. V. Yakovlev

There are no affiliations available

Personalised recommendations