Antonie van Leeuwenhoek

, Volume 50, Issue 3, pp 261–268 | Cite as

Gemmata obscuriglobus, a new genus and species of the budding bacteria

  • P. D. Franzmann
  • V. B. D. Skerman


A single strain of a budding bacterium was isolated from freshwater. The strain had a life-cycle, with a multitrichous swarmer stage, and produced a phase-dark inclusion of packed ribosomes and nuclear material. The mol % G+C of the DNA was 64.4±1.0. A new genus,Gemmata with the type speciesGemmata obscuriglobus is proposed. The type strain is UQM 2246.


Type Strain Nuclear Material Single Strain Swarmer Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. DoelleH. W. 1975. Bacterial Metabolism, Second edition. — Academic Press Inc., New York.Google Scholar
  2. FranzmannP. D. and SkermanV. B. D. 1981.Agitococcus lubricus gen. nov. sp. nov., a lipolytic, twitching coccus from freshwater. — Int. J. Syst. Bacteriol.31: 177–183.Google Scholar
  3. HenriciA. T. and JohnsonD. E. 1935. Studies of freshwater bacteria II. Stalked bacteria, a new order of Schizomycetes. — J. Bacteriol.30: 61–93.Google Scholar
  4. HirschP. 1972. Re-evaluation ofPasteuria ramosa Metchnikoff 1888, a bacterium pathogenic forDaphnia species. — Int. J. Syst. Bacteriol.22: 112–116.Google Scholar
  5. HughR. and LeifsonE. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. — J. Bacteriol.66: 24–26.PubMedGoogle Scholar
  6. LuftJ. H. 1971. Ruthenium red and violet. I. Chemistry, purification methods of use for electron microscopy and mechanism of action. — Anat. Rec.17: 347–368.Google Scholar
  7. MarmurJ. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. — J. Mol. Biol.3: 208–218.Google Scholar
  8. MarmurJ. and DotyP. 1962. Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. — J. Mol. Biol.5: 109–118.PubMedGoogle Scholar
  9. MetchnikoffM. E. 1888.Pasteuria ramosa, un représentant des bactéries à division longitudinale. — Ann. Inst. Pasteur, Paris2: 165–170.Google Scholar
  10. PringsheimE. G. 1946. Pure Cultures of Algae. — Cambridge University Press, Cambridge.Google Scholar
  11. SayreR. M., AdamsJ. R. and WerginW. P. 1979. Bacterial parasite of a cladoceran: morphology, development in vivo, and taxonomic relationships withPasteuria ramosa Metchnikoff 1888. —Int. J. Syst. Bacteriol.29: 252–262.Google Scholar
  12. SkermanV. B. D. 1967. A Guide to the Identification of the Genera of Bacteria, Second edition. — The Williams and Wilkins Co., Baltimore.Google Scholar
  13. SkermanV. B. D. 1968. A new type of micromanipulator and microforge. — J. Gen. Microbiol.54: 287–297.PubMedGoogle Scholar
  14. SkermanV. B. D., McGowanV. and SneathP. H. A. 1980. Approved lists of bacterial names. — Int. J. Syst. Bacteriol.30: 225–420.Google Scholar
  15. StaleyJ. T. 1973. Budding bacteria of thePasteuria-Blastobacter group. — Can. J. Microbiol.19: 609–614.PubMedGoogle Scholar
  16. StarrM. P. and MandelM. 1969. DNA base composition and taxonomy of phytopathogenic and other enterobacteria. — J. Gen. Microbiol.56: 113–123.PubMedGoogle Scholar
  17. StarrM. P., SayreR. M. and SchmidtJ. M. 1983. Assigment of ATCC 27377 toPlanctomyces staleyi sp. nov. and conservation ofPasteuria ramosa Metchnikoff 1888 on the basis of type descriptive material. Request for an Opinion. — Int. J. Syst. Bacteriol.33: 666–671.Google Scholar
  18. VanErtM. and StaleyJ. T. 1971. Gas-vacuolated strains ofMicrocyclus aquaticus. — J. Bacteriol.108: 236–240.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • P. D. Franzmann
    • 1
  • V. B. D. Skerman
    • 1
  1. 1.Department of MicrobiologyUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations