Advertisement

Periodica Mathematica Hungarica

, Volume 33, Issue 1, pp 45–50 | Cite as

A comment on the joint embedding property

  • Aleksander Ignjatović
  • Milan Z. Grulović
Article

Abstract

The paper presents an alternative proof of the known result that no recursively enumerable number theory has the joint embedding property.

Mathematics subject classification numbers, 1991

Primary 03C62 03C52 Secondary 03C25 

Key words and phrases

Joint embedding property amalgamation property Peano arithmetic number theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gaifman, H., A Note on Models and Submodels of Arithmetic,Lecture Notes in Mathematics 255, Springer-Verlag, 1972, 128–144.Google Scholar
  2. [2]
    GoldreiD.C., MacintyreA. and SimmonsH., The Forcing Companions of Number Theories,Israel Journal of Mathematics 14 (1973), 317–337.MathSciNetGoogle Scholar
  3. [3]
    GrätzerG.,General Lattice Theory, Akademic-Verlag, Berlin, 1978.Google Scholar
  4. [4]
    GrulovićM.Z. On n-Finite Forcing Companions,Review of Research, Faculty of Science, University of Novi Sad, Mathematics Series 14(2), (1984), 211–222.Google Scholar
  5. [5]
    Ignjatović, A. Modeli aritmetike, Magistarski rad (Master thesis), Beograd, 1984.Google Scholar
  6. [6]
    KissE. W., MárkiL., PröhleP. and TholenW., Categorical Algebraic Properties. A Compendium on Amalgamation, Congruence Extension, Epimorphisms, Residual Smallness and Injectivity.Studia Sci. Math. Hungar. 18, 1983, 79–141.Google Scholar
  7. [7]
    MacintyreA., SimmonsH., Algebraic Properties of Number Theories,Israel Journal of Mathematics 22(1) (1975), 7–27.MathSciNetGoogle Scholar
  8. [8]
    Matijasevič, Y., Enumerable sets are diophantine,Sov. Math. Dokl., 1970, 354–357.Google Scholar
  9. [9]
    Mendelson, E.,Introduction to Mathematical Logic, D. Van Nostrand Company, 1979.Google Scholar
  10. [10]
    OteroM., A Note on Joint Embedding Property in Fragments of Arithmetic,Bull. London Math. Soc. 24 (1992), 417–423.zbMATHMathSciNetGoogle Scholar
  11. [11]
    OteroM., The joint embedding property in normal open induction,Annals of Pure and Applied Logic 60 (1993), 275–290.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Otero, M., The Amalgamation Property in Normal Open Inductions,Notre Dame Journal of Formal Logic, Volume34, Number1, Winter 1993.Google Scholar
  13. [13]
    ParisJ.B. and KirbyL.A., ∑n-collection schemas in arithmetic,Logic Colloquium ’77 (ed. A.J.Macintyre et al), Norht-Holland, Amsterdam, 1978, 199–209.Google Scholar
  14. [14]
    Robinson, A., Forcing in Model Theory,Proceedings of Colloquium of Model Theory, Rome, 1969, 69–82.Google Scholar
  15. [15]
    Shoenfield, J.R. Mathematical Logic, Addison-Wesley Publishing Company, 1967.Google Scholar
  16. [16]
    Zeitler, H.,Modeltheoretic Investigations on the Amalgamation Property, Ph. D. Thesis, Heidelberg, 1976.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Aleksander Ignjatović
    • 1
  • Milan Z. Grulović
    • 2
  1. 1.Carnegie MellonDepartment of PhilosophyPittsburghUSA
  2. 2.Institute of MathematicsUniversity of Novi SadNovi SadYugoslavia

Personalised recommendations