International Journal of Legal Medicine

, Volume 105, Issue 2, pp 99–103 | Cite as

Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds

  • P. Betz
  • A. Nerlich
  • J. Wilske
  • J. Tübel
  • R. Penning
  • W. Eisenmenger
Original Articles

Summary

Human skin wounds (66) inflicted between 20 h and 7 months prior to biopsy were studied. In order to identify the type of cellular differentiation of the fibroblastic cells in the granulation tissue, alpha-smooth muscle actin and desmin were immunohistochemically localized. The value of any presumed time-dependent appearance and/or disappearance of positively stained cells was tested for the estimation of wound age. In skin specimens with a wound age less than 5 days (n =15) no typical granulation tissue had developed and no alpha-actin-positive myofibroblasts could be detected. The first appearance of positively reacting myofibroblasts was noted in a 5-day-old wound. In 57% of the lesions with a wound age between 5 and 31 days (25 out of 44 cases) typical granulation tissue formation was present and myofibroblasts with positive reaction for alpha-smooth muscle actin could be identified. Numerous positively reacting cells could generally be found in wounds aged between 16 and 31 days, but also in wounds less than 16 days old. In 29% of the cases with a wound age of more than 31 days (2 out of 7 cases) alpha-sma-positive myofibroblasts also occured. Fibroblastic cells positive for desmin could not be seen at all in our series. Our results demonstrate the appearance of alpha-sma-positive myofibroblasts with the initial formation of typical granulation tissue in human skin lesions as early as approximately 5 days after wounding. In contrast to recent experimental results these cells remained detectable in wounds aged more than 2 months in some cases. The immunohistochemical detection of actin-positive cells, therefore, demonstrates whether an unknown skin wound is aged approximately 5 days or more. Even though a time-dependent decrease of myofibroblasts in human granulation tissue after 31 days in human wounds seems probable, the extended presence (up to about 2 months) of these cells allows no further exact age determination of older wounds.

Key words

Myofibroblasts Alpha-smooth muscle actin Desmin Immunohistochemistry Wound age 

Zusammenfassung

Es wurden 66 menschliche Hautwunden mit einem Wundalter zwischen 20 Stunden und 7 Monaten sowie komplikationsloser Wundheilung ausgewertet. Nach immunhistochemischer Darstellung von alpha-Aktin und Desmin wurde das zeitabhängige Auftreten positiv reagierender Myofibroblasten im Wundgebiet untersucht. Es zeigte sich hierbei, daß in Hautwunden mit einem Wundalter unter 5 Tagen keine positiv anfärbbaren Zellen zu beobachten waren. In 57% (25 von 44 Fällen) der Hautverletzungen, die zwischen 5 und 31 Tagen überlebt worden waren, fanden sich im Granulationsgewebe alpha-Aktin haltige Myofibroblasten. Besonders zahlreiche, positiv reagierende Zellen traten zwischen ca. 16 bis 31 Tagen nach Wundsetzung auf, konnten jedoch auch bereits in Hautwunden jüngeren Alters beobachtet werden. In 2 von 7 Fällen mit einem Wundalter zwischen 1 und 7 Monaten (29%) liesen sich ebenfalls alpha-Aktin positive Myofibroblasten im Wundgebiet nachweisen. Desmin-haltige Myofibroblasten konnten nicht beobachtet werden. Die Ergebnisse zeigen, daß alpha-Aktin positive Myofibroblasten bereits mit Ausbildung typischen Granulationsgewebes ab ca. dem 5. Tag nach Verletzung im Wundgebiet auftreten. Der Nachweis positiv reagierender Zellen im Wundgebiet läßt jedoch aufgrund der Variabilität der Befunde keine weitere Differenzierung des Wundalters zu. Da alpha-Aktin-positive Myofibroblasten im Untersuchungsgut auch noch in einer Hautwunde mit einem Alter von 2 Monaten und 13 Tagen beobachtet werden konnten, ist die im Tierexperiment gefundene maximale Nachweisbarkeitsdauer von 30 Tagen auf das Granulationsgewebe menschlicher Hautwunden nicht übertragbar.

Schlüsselwörter

Myofibroblasten Alpha-Aktin Desmin Immunhistochemie Wundalter 

References

  1. 1.
    Berg S (1975) Vitale Reaktionen und Zeitschatzungen. In: Mueller B (eds) Gerichtliche Medizin, vol 1. Springer, Berlin Heidelberg New York, pp 326–340Google Scholar
  2. 2.
    Betz P, Penning R, Eisenmenger W (1991) Lipophagen der Haut als zusätzlicher Parameter für die histologische Wundalterschätzung. Rechtsmedizin 1:139–144Google Scholar
  3. 3.
    Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1991) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Leg Med 105:21–26Google Scholar
  4. 4.
    Bolmont C, Andujar M, Peyrol S, Grimaud J-A (1991) Desmin expression in fibroblasts of murine periovular granuloma during liver Schistosoma mansoni infection. Differentiation 46:89–95PubMedGoogle Scholar
  5. 5.
    Cordell JL, Falini B, Ether WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford AF, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using immuno complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP-complex). J Histochem Cytochem 32:219–229PubMedGoogle Scholar
  6. 6.
    Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29PubMedGoogle Scholar
  7. 7.
    Eisenmenger W, Nerlich A, Glück G (1988) Die Bedeutung des Kollagens bei der Wundaltersbestimmung. Z Rechtsmed 100:79–100CrossRefPubMedGoogle Scholar
  8. 8.
    Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550CrossRefPubMedGoogle Scholar
  9. 9.
    Golde DW, Hocking WG, Quan SG, Sparkes RS, Gale RP (1980) Origin of human bone marrow fibroblasts. Br J Haematol 44:183–187PubMedGoogle Scholar
  10. 10.
    Hsu SM, Raine L, Fanger HC (1981) A comparative study of the peroxidase-anti peroxidase method and an avidin-biotin complex method for studying polypeptide hormones with radio immunoassay antibodies. Am J Clin Pathol 75:734–739PubMedGoogle Scholar
  11. 11.
    Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550PubMedGoogle Scholar
  12. 12.
    Oehmichen M (1973) Demonstration of hematogenous origin of fibroblasts by parabiosis. Experientia 29:841–842CrossRefPubMedGoogle Scholar
  13. 13.
    Oehmichen M (1990) Die Wundheilung. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Ross R (1968) The fibroblast and wound repair. Biol Rev 43:51–96PubMedGoogle Scholar
  15. 15.
    Ross R, Everett NB, Tyler R (1970) Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 44:645–654CrossRefPubMedGoogle Scholar
  16. 16.
    Sappino AP, Schürch W, Gabbiani G (1990) Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as markers of phenotypic modulations. Lab Invest 63:144–161PubMedGoogle Scholar
  17. 17.
    Schürch W, Seemayer TA, Lagace R, Gabbiani G (1984) The intermediate filament cytoskeleton of myofibroblasts: an immunofluorescence and ultrastructural study. Virchows Arch [A] 403:323–336Google Scholar
  18. 18.
    Silver IA (1973) Local and systemic factors which affect the proliferation of fibroblasts. In: Kulonen E, Karainenem JPK (eds) Biology of fibroblasts. Academic Press, London New York, pp 507–518Google Scholar
  19. 19.
    Skalli O, Gabbiani G (1988) The biology of the myofibroblast: relationship to wound contraction and fibrocontractive diseases. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Plenum Publishing Corporation, New York, pp 373–402Google Scholar
  20. 20.
    Skalli O, Schürch W, Seemayer T, Lagace R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogenous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60:275–285PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. Betz
    • 1
  • A. Nerlich
    • 2
  • J. Wilske
    • 1
  • J. Tübel
    • 1
  • R. Penning
    • 1
  • W. Eisenmenger
    • 1
  1. 1.Departments of Legal MedicineUniversity of MunichMünchen 2Germany
  2. 2.Departments of PathologyUniversity of MunichMünchen 2Germany

Personalised recommendations