Journal of Molecular Evolution

, Volume 43, Issue 3, pp 287–292 | Cite as

Molecular evidence for Acanthocephala as a subtaxon of Rotifera

  • James R. Garey
  • Thomas J. Near
  • Michael R. Nonnemacher
  • Steven A. Nadler
Article

Abstract

Rotifers are free-living animals usually smaller than 1 mm that possess a characteristic wheel organ. Acanthocephalans (thorny-headed worms) are larger endoparasitic animals that use vertebrates and arthropods to complete their life cycle. The taxa Acanthocephala and Rotifera are considered separate phyla, often within the taxon Aschelminthes. We have reexamined the relationship between Rotifera and Acanthocephala using 18S rRNA gene sequences. Our results conclusively show that Acanthocephala is the sister group of the rotifer class Bdelloidea. Rotifera was nonmonophyletic in all molecular analyses, which supports the hypothesis that the Acanthocephala represent a taxon within the phylum Rotifera and not a separate phylum. These results agree with a previous cladistic study of morphological characters.

Key words

Rotifers Acanthocephalans Bdelloidea Lemniscea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks DR, McClennan DA (1993) Parascript. Smithsonian Press, Washington, pp 121–122Google Scholar
  2. Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MAGoogle Scholar
  3. Bullock WL (1969) Morphological features as tools and pitfalls in acanthocephalan systematics. In: Schmidt GD (ed) Problems in systematics of parasites. University Park Press, Baltimore, pp 9–45Google Scholar
  4. Clark RB (1979) Radiation of the Metazoa. In: House MR (ed) The origins of major invertebrate groups. Academic Press, New York, pp 55–101Google Scholar
  5. Clément P (1993) The phylogeny of rotifers: molecular, ultrastructural and behavioural data. Hydrobiologia 255/256:527–544CrossRefGoogle Scholar
  6. Conway Morris S, Crompton DWT (1982) The origins and evolution of the acanthocephala. Biol Rev 57:85–115Google Scholar
  7. De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–740PubMedGoogle Scholar
  8. Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales on RbcL sequences. Ann MO Bot Gard 79:333–345Google Scholar
  9. Dunagan TT, Miller DM (1991) Acanthocephala. In: Harrison FW, Rupert EE (eds) Microscopic anatomy of invertebrates, vol. 4: Aschelminthes. Wiley-Liss, New York, pp 299–332Google Scholar
  10. Felsenstein J (1993) PHYLIP—Phylogeny Inference Package, version 3.5. University of Washington, SeattleGoogle Scholar
  11. Hafner K (1950) Organisation und systematische Stellung der Acanthocephalan. Verh Dtsch Zool Ges 145:245–274Google Scholar
  12. Hempstead PG, Regular SC, Ball IR (1990) A method for the preparation of high-molecular-weight DNA from marine and freshwater triclads. DNA Cell Biol 9:57PubMedGoogle Scholar
  13. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195PubMedGoogle Scholar
  14. Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogenies. Science 264:671–677PubMedGoogle Scholar
  15. Hyman LB (1951) The invertebrates, vol. III: pseudocoelomate groups. McGraw-Hill, New YorkGoogle Scholar
  16. Kumar S (1995) PHYLTEST: PHYLogenetic hypothesis TESTing by using minimum evolution criterion. Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, University Park, PAGoogle Scholar
  17. Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191PubMedGoogle Scholar
  18. Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD (1992) Controversy on chloroplast origins. FEBS Lett 301: 127–131CrossRefPubMedGoogle Scholar
  19. Lorenzen S (1985) Phylogenetic aspects of pseudocoelomate evolution. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 210–223Google Scholar
  20. Malakhov VV (1994) Classification of the Pseudocoelomates. In: Hope WD (ed) Nematodes, structure, development, classification and phylogeny. Smithsonian Institute Press, Washington, pp 175–201Google Scholar
  21. Marcus E (1958) On the evolution of the animal phyla. Quart Rev Biol 33:24–58CrossRefGoogle Scholar
  22. Markevich GI (1993) Phylogenetic relationships of Rotifera to other veriform taxa. Hydrobiologia 255/256:521–526Google Scholar
  23. Melone G, Ferraguti M (1994) The spermatozoa ofBrachionus plicafilis (Rotifera, Monogononta) with some notes on sperm ultrastructure in Rotifera. Acta Zool 75:81–88Google Scholar
  24. Neuhaus B (1994) Ultrastructure of alimentary canal and body cavity, ground pattern, and phylogenetic relationships of the Kinorhyncha. Microfauna Marina 9:61–156Google Scholar
  25. Nielsen C (1995) Animal evolution. Oxford University Press, OxfordGoogle Scholar
  26. Raff R, Marshall CR, Turbeville JM (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annu Rev Ecol Syst 25:351–375CrossRefGoogle Scholar
  27. Remane A (1963) The systematic position and phylogeny of the pseudocoelomates. In: Dougherty EC (ed) The lower Metazoa. University of California Press, Berkeley, pp 247–255Google Scholar
  28. Rieger RM, Tyler S (1995) Sister-group relationship of Gnathostomulida and Rotifera-Acanthocephala. Invert Biol 114:186–188Google Scholar
  29. Ruppert EE (1991) Introduction to the aschelminth phyla: a consideration of mesoderm, body cavities, and cuticle. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4: Aschelminthes. Wiley-Liss, New York, pp 1–17Google Scholar
  30. Ruppert EE, Barnes RD (1994) Invertebrate zoology. Saunders, New YorkGoogle Scholar
  31. Rzhetsky A, Kumar S, Nei M (1995) Four-cluster analysis: a simple method to test phylogenetic hypothesis. Mol Biol Evol 12:163–167PubMedGoogle Scholar
  32. Steel MA, Lockhart PJ, Penny D (1993) Confidence in evolutionary trees from biological sequence data. Nature 364:440–442CrossRefPubMedGoogle Scholar
  33. Swofford D (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign, ILGoogle Scholar
  34. Telford MJ, Holland PWH (1993) The phylogenetic affinities of the Chaetognaths: a molecular analysis. Mol Biol Evol 10:660–676PubMedGoogle Scholar
  35. Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244Google Scholar
  36. VanCleave HJ (1941) Relationships of the Acanthocephala. Am Nat 75:31–47Google Scholar
  37. Van de Peer Y, Van den Broeck I, De Rijk R, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494PubMedGoogle Scholar
  38. Winnepenninckx B, Backeljau T, Mackey LY, Brooks JM, De Wachter R, Kumar S, Garey JR (1995) 18S rRNA data indicate that the aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol 12:1132–1137PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • James R. Garey
    • 1
  • Thomas J. Near
    • 2
  • Michael R. Nonnemacher
    • 1
  • Steven A. Nadler
    • 3
  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA
  2. 2.Center for BiodiversityIllinois Natural History SurveyChampaignUSA
  3. 3.Department of NematologyUniversity of CaliforniaCADavis, DavisUSA

Personalised recommendations