Journal of Molecular Evolution

, Volume 43, Issue 3, pp 281–286 | Cite as

Molecular systematics of theDrosophila hydei subgroup as inferred from mitochondrial DNA sequences

  • Greg S. Spicer
  • Scott Pitnick


The phylogeny of theDrosophila hydei subgroup, which is a member of theD. repleta species group, was inferred from 1,515 base pairs of mitochondrial DNA sequence of the cytochrome oxidase subunits I, II, and III. Four of the seven species in the subgroup were examined, which are placed into two taxonomic complexes: theD. bifurca complex (D. bifurca) andD. nigrohydei) and theD. hydei complex (D. hydei and (D. eohydei). Both complexes appear to be monophyletic, although theD. bifurca complex is only weakly supported. The evolution of chromosomal change, interspecific crossability, sperm gigantism, and divergence times of the subgroup is discussed in a phylogenetic context.

Key words

DNA sequence variation Maximum likelihood Γ-distributed rates model Cytochrome oxidase Molecular clock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckenbach AT, Wei YW, Liu H (1993) Relationships in theDrosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol 10:619–634PubMedGoogle Scholar
  2. Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13CrossRefPubMedGoogle Scholar
  3. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239CrossRefPubMedGoogle Scholar
  4. Casanova J-L, Pannetier C, Jaulin C, Kourilsky P (1990) Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucleic Acids Res 18:4028PubMedGoogle Scholar
  5. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22:252–271CrossRefPubMedGoogle Scholar
  6. de Bruijn MHL (1983)Drosophila melanogaster mitochondrial DNA, a novel gene organization and genetic code. Nature 304:234–241PubMedGoogle Scholar
  7. DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of HawaiianDrosophila. J Mol Evol 26:157–164CrossRefPubMedGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  9. Felsenstein J (1993) PHYLIP: Phylogeny inference Package (ver 3.5c). University of Washington, SeattleGoogle Scholar
  10. Grimaldi DA (1987) Amber fossil Drosophilidae (Diptera), with particular reference to the Hispaniolan taxa. Am Mus Nov 2880:1–23Google Scholar
  11. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedGoogle Scholar
  12. Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59:277–290CrossRefGoogle Scholar
  13. Hihara F, Kurokawa H (1987) The sperm length and the internal reproductive organs ofDrosophila with special references to phylogenetic relationships. Zool Sci (Tokyo) 4:167–174Google Scholar
  14. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  15. Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102PubMedGoogle Scholar
  16. Joly D, Bressac C (1994) Sperm length in Drosophilidae (Diptera): estimation by testis and receptacle lengths. Int J Insect Morphol Embryol 23:85–92Google Scholar
  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules, In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123Google Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  19. Lachaise D, Carion M-L, David JR, Lemeunier F, Tsacas L, Ashburner M (1988) Historical biogeography of theDrosophila melanogaster species subgroup. Evol Biol 22:159–225Google Scholar
  20. Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91: 1455–1459PubMedGoogle Scholar
  21. Liu H, Beckenbach AT (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phyl Evol 1:41–52Google Scholar
  22. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612Google Scholar
  23. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution (ver 3.05). Sinauer, Sunderland, MAGoogle Scholar
  24. Margush T, McMorris FR (1981) Consensus n-trees. Bull Math Biol 43:239–244CrossRefGoogle Scholar
  25. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich HA (1987) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273Google Scholar
  26. Pitnick S (1996) Investment in testes and the cost of making long sperm inDrosophila. Am Nat 148:57–80CrossRefGoogle Scholar
  27. Pitnick S, Markow TA (1994) Large-male advantages associated with costs of sperm production inDrosophila hydei, a species with giant sperm. Proc Natl Acad Sci USA 91:9277–9281PubMedGoogle Scholar
  28. Pitnick S, Markow TA, Spicer GS (1995a) Delayed male maturity is a cost of producing large sperm inDrosophila. Proc Natl Acad Sci USA 92:10614–10618Google Scholar
  29. Pitnick S, Spicer GS, Markow TA (1995b) How long is a giant sperm? Nature 375:109CrossRefGoogle Scholar
  30. Rohlf FJ (1982) Consensus indices for comparing classifications. Math Biosci 59:131–144Google Scholar
  31. Russo CAM, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404PubMedGoogle Scholar
  32. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491PubMedGoogle Scholar
  33. Saitou N, Imanishi M (1989) Relative efficiencies of the Fitch-Margolish, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor joining methods of phylogenetic tree reconstruction in obtaining the correct tree. Mol Biol Evol 6:514–525Google Scholar
  34. Schäfer U (1978) Sterility inDrosophila hydei ×D. neohydei hybrids. Genetica 49:205–214CrossRefGoogle Scholar
  35. Simon C, Franke A, Martin A (1991) The polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM (ed) Molecular techniques in taxonomy. NATO Advanced Studies Institute, H57, Springer Berlin, pp 329–355Google Scholar
  36. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  37. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W.H. Freeman, San FranciscoGoogle Scholar
  38. Spicer GS (1988) Molecular evolution among someDrosophila species as indicated by two-dimensional electrophoresis. J Mol Evol 27: 250–260CrossRefPubMedGoogle Scholar
  39. Spicer GS (1995) Phylogenetic utility of the mitochondrial cytochrome oxidase gene: molecular evolution of theDrosophila buzzattii species complex. J Mol Evol 41:749–759CrossRefPubMedGoogle Scholar
  40. Swofford DL (1996) PAUP*Star (test ver 4.0). Sinauer, Sunderland, MAGoogle Scholar
  41. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  42. Villela CR (1983) A revision of theDrosophila repleta group (Diptera: Drosophilidae). Rev Bras Entomol 27:1–114Google Scholar
  43. Wasserman M (1954) Cytological studies of the repleta group. Univ Texas Publ 5422:130–152Google Scholar
  44. Wasserman M (1962) Cytological studies of the repleta group of the genus Drosophila. IV. The hydei subgroup. Univ Texas Publ 6205: 73–84Google Scholar
  45. Wasserman M (1982) Evolution of therepleta group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology ofDrosophila, vol 3B. Academic Press, London, pp 61–139Google Scholar
  46. Wasserman M (1992) Cytological evolution of theDrosophila repleta species group. In: Krimbas CB, Powell JR (eds)Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 455–552Google Scholar
  47. Wharton LT (1944) V. Interspecific hybridization in the repleta group. Univ Texas Publ 4445:175–193Google Scholar
  48. Wheeler MR (1949) XIII. Taxonomic studies on the Drosophilidae. Univ Texas Pub 4920:157–195Google Scholar
  49. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • Greg S. Spicer
    • 1
  • Scott Pitnick
    • 2
  1. 1.Institute of Molecular Medical SciencesPalo AltoUSA
  2. 2.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations