Journal of Molecular Evolution

, Volume 43, Issue 3, pp 263–269

Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: Gene duplication and divergence of a common ancestor rather than convergent evolution

  • Ana M. Moura-da-Silva
  • R. David G. Theakston
  • Julian M. Cramptonl
Article

Abstract

The evolution of the Metalloproteinase Disintegrin Cysteine-rich (MDC) gene family and that of the mammalian Matrix-degrading Metalloproteinases (MMPs) are compared. The alignment of snake venom and mammalian MDC and MMP precursor sequences generated a phylogenetic tree that grouped these proteins mainly according to their function. Based on this observation, a common ancestry is suggested for mammalian and snake venom MDCs; it is also possible that gene duplication of the already-assembled domain structure, followed by divergence of the copies, may have significantly contributed to the evolution of the functionally diverse MDC proteins. The data also suggest that the structural resemblance of the zinc-binding motif of venom MDCs and MMPs may best be explained by common ancestry and conservation of the proteolytic motifs during the divergence of the proteins rather than through convergent evolution.

Key words

Metalloproteinase Disintegrin Evolution Venom Phylogeny Gene duplication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tools. J Mol Biol 215:403–410Google Scholar
  2. Bjarnason JB, Fox JW (1994) Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther 62:325–372PubMedGoogle Scholar
  3. Blobel CP, Wolfsberg TG, Turck CW, Myers DG, Primakoff P, White JM (1992) A potential fusion peptide and integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252CrossRefPubMedGoogle Scholar
  4. Blundell TL (1994) Metalloproteinase superfamilies and drug design. Nat Struc Biol 1:73–75Google Scholar
  5. Creigton TE, Darby NJ (1989) Functional evolutionary divergence of proteolytic enzymes and their inhibitors. Trends Biochem Sci 14: 319–324Google Scholar
  6. Daltry AA, Wüster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540CrossRefPubMedGoogle Scholar
  7. Dayhoff MO, Schartz RM, Orcutt BC (1978) Atlas of protein sequence and structure, vol 5, supplement 3. NBRF, Washington, p 345Google Scholar
  8. De Souza SJ, Brentani R (1993) Sequence homology between a bacterial metalloproteinase and eukaryotic matrix metalloproteinases. J Mol Evol 36:596–598CrossRefPubMedGoogle Scholar
  9. Emi M, Katagid T, Harada Y, Saito H, Inazawa J, Ito I, Kasumi, F, Nakamura Y (1993) A novel metalloprotease/disintegrin-like gene at 17g213 is somatically rearranged in two primary breast cancers. Nat Genet 5:151–157CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  11. Genetics Computer Group (1991) Program manual for the GCG package, Version 7. 575 Science Drive, Madison, WI 53711, USAGoogle Scholar
  12. Gomis-Ruth FX, Kress LF, Bode W (1993) First structure of a venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases EMBO J 12:4151–4157PubMedGoogle Scholar
  13. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewarowski S (1990) Disintegrins—a family of integrins inhibitory proteins from viper venoms. Proc Sue Exp Biol Med 5:168–171Google Scholar
  14. Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5:151–153PubMedGoogle Scholar
  15. Higgins DG, Bleasby AJ, Fuchs R (1992) Cluster V: improved software for multiple sequence alignment. Comput Appl Biosci 2: 189–191Google Scholar
  16. Huang TF, Holt JC, Kirby EP, Niewiarowski S (1989) Trigramin—primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIB/IIIA complex on human platelets. Biochemistry 28:661–666PubMedGoogle Scholar
  17. Ikeo K, Takahashi K, Gobori T (1995) Different evolutionary history of kringle and protease domains in serine proteases: a typical example of domain evolution. J Mol Evol 40:331–336CrossRefPubMedGoogle Scholar
  18. Jongeneel CV, Bouvier J, Bairoch A (1989) A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 242: 211–214CrossRefPubMedGoogle Scholar
  19. Moura-da-Silva AM, Paine MJI, Diniz MRV, Theakston RDG, Crampton JM (1995) The molecular cloning of a phospholipase A2 fromBothrops jararacussu venom: evolution of venom Group II PLA2's may imply gene duplication. J Mol Evol 41:174–179CrossRefPubMedGoogle Scholar
  20. Ohta T (1994) On hypervadability at the reactive center of proteolytic enzymes and their inhibitors. J Mol Evol 39:614–619CrossRefPubMedGoogle Scholar
  21. Paine MJI, Desmond HP, Theakston RDG, Crampton JM (1992) Purification, cloning and molecular characterization of a high molecular weight haemorrhagic metalloprotease, jararhagin, fromBothrops jararaca venom. J Biol Chem 267:22869–22876PubMedGoogle Scholar
  22. Paine MJI, Moura da Silva AM, Theakston RDG, Crampton JM (1994) Cloning of metalloproteinase genes in carpet viper (Echis pyramidum leakeyi): further members of the metalloproteinase/disintegrin gene family. Eur J Biochem 224:483–488CrossRefPubMedGoogle Scholar
  23. Perry ACF, Jones R, Barker PJ, Hall L (1992) A mammalian epididymal protein with remarkable sequence similarity to snake venom hemorrhagic peptides. Biochem J 286:671–675PubMedGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  25. Weskamp G, Blobel CP (1994) A family of cellular proteins related to snake venom disintegrins. Proc Natl Acad Sci USA 91:2748–2751PubMedGoogle Scholar
  26. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective-tissue remodelling. FASEB J 5:2145–2154PubMedGoogle Scholar
  27. Wolfsberg TG, Bazan JF, Blobel CP, Myles DG, Primakoff P, White JM (1993) The precursor region of a protein active in sperm-egg fusion contains a metalloproteinase and disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci USA 90:10783–10787PubMedGoogle Scholar
  28. Yoshida S, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S (1990) Molecular cloning of a cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in routine monocytic lineage. Int Immunol 2: 586–591Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • Ana M. Moura-da-Silva
    • 1
    • 3
  • R. David G. Theakston
    • 2
  • Julian M. Cramptonl
    • 1
  1. 1.Wolfson Unit of Molecular GeneticsLiverpool School of Tropical MedicineLiverpoolUK
  2. 2.Venom Research UnitLiverpool School of Tropical MedicineLiverpoolUK
  3. 3.Laboratorio de ImunopatologiaInstituto ButantanSāo PauloBrazil

Personalised recommendations